= ПЕТРОЛОГИЯ, ГЕОХИМИЯ =

КАРБОНАТИТЫ ЧЕТЛАССКОГО КОМПЛЕКСА (СРЕДНИЙ ТИМАН): ГЕОХИМИЧЕСКИЕ И ИЗОТОПНЫЕ ДАННЫЕ

© 2013 г. И. Л. Недосекова, Н. В. Владыкин*, О. В. Удоратина**, Ю. Л. Ронкин

Первые минералого-петрографические исследования Четласского комплекса дайковых ультрабазитов и связанных с ними щелочных метасоматитов были проведены в 50–60-х гг. ХХ в. [2, 21]. В 80-х гг. в связи с поисками коренных источников алмазов на Тимане Ухтинской ГРЭ было проведено бурение на глубину более 200 м и выполнены специализированные тематические минералогопетрографические работы по исследованию потенциально алмазоносных калиевых пикритов и лампрофиров Четласского комплекса. В эти годы его изучением занимались известные российские геологи И.П. Илупин, Е.В. Францессон, В.И. Степаненко, И.А. Малахов; позднее – А.Б. Макеев, В.Л. Андреичев, Н.И. Брянчанинова, Т.Г. Шумилова и др.

В результате геологических, минералогических и геохимических исследований в пределах Четласского комплекса было установлено широкое развитие щелочных метасоматитов и карбонатитов, несущих редкометально-редкоземельную минерализацию. Была выявлена пространственная, структурная и временная связь дайковых щелочных ультрабазитов с редкометальными щелочными метасоматитами и карбонатитами, и сделан вывод о широком площадном распространении этих пород и их генетической связи [3, 13, 21]. Наряду с этим, ряд исследователей обосновывает перспективность Четласского комплекса на возможность обнаружения в них коренных алмазов [6, 17, 19, 20].

КРАТКАЯ ГЕОЛОГО-ПЕТРОГРАФИЧЕСКАЯ ХАРАКТЕРИСТИКА ЧЕТЛАССКОГО КОМПЛЕКСА

Четласский дайковый комплекс ультрабазитов, фенитов и карбонатитов находится на Среднем Тимане, в ю-в части Четласского камня, занимая площадь около 1000 км². Комплекс приурочен к Центрально-Тиманскому разлому, развитому в перикратонной зоне. Вмещающими породами являются терригенные и терригенно-карбонатные образования четласской (R₂) и быстринской (R₃) серий. Дайковые тела ультрабазитов трассируют разломы с-в простирания, образуя дайковые поля. Выявлено около 50 таких полей, в которых насчитывается несколько тысяч даек. Ведущей формой залегания ультрабазитов являются крутопадающие дайки мощностью до 10–20 м (с раздувами до 40–70 м) и протяженностью до 3 км, а также жилы мощностью до 10 см и протяженностью до первых десятков метров. Характерной особенностью даек является осложнение их морфологии в виде раздувов и перегибов. Наиболее крупный раздув описан под названием массива реки Косью.

В тесной пространственной, структурной и временной связи с дайками ультрабазитов находятся щелочные метасоматиты (фениты, флогопитовые слюдиты, полевошпатовые метасоматиты) и карбонатиты с акцессорной редкометальной минерализацией - пирохлором, колумбитом, ильменорутилом, монацитом, а также гидротермальные гетит-полевошпатовые и кварц-гетит-гематитовые породы [2, 3]. Тела щелочных метасоматитов и карбонатитов локализованы в тех же, что и дайковые ультрабазиты, тектонических зонах с-в простирания, но в отличие от ультрабазитов они проявлены на отдельных участках. За счет вмещающих осадочно-метаморфических пород быстринской серии (песчаников, алевролитов, сланцев и филлитов) образованы фениты, сложенные эгирином, щелочным амфиболом, микроклином и альбитом, часто карбонатизированные. По ультрабазитам развивались флогопитовые слюдиты и полевошпатовые метасоматиты. При этом форма их тел часто полностью определяется морфологией тел ультрабазитов. Флогопитовые слюдиты и наиболее крупные тела карбонатитов распространены в Косьюской зоне разлома в районе массива (раздува дайки пикритов) р. Косью, где особенно интенсивно проявлено карбонатитообразование и связанные с ним приконтактовые процессы метасоматоза. Здесь же отмечаются штокверковые зоны гетит-полевошпатовых пород, которые тесно связаны с процессом карбонатитообразования и, вероятно, являются гидротермальной стадией карбонатитов. Наиболее поздние кварц-гетитгематитовые жилы с-в простирания пересекают все породы массива.

Ультраосновные дайковые породы Четласского комплекса представлены лампрофирами различной щелочности (от умеренно щелочных до щелочных разностей пород). Основная часть ультраосновных пород представлена умеренно-щелочными лампрофирами спессартит-керсантитового ряда, которые были детально изучены ранее [6]. Кроме то-

^{*} Институт геохимии СО РАН,

^{**} Институт геологии Коми НЦ РАН

го, здесь описаны магнезиальные разновидности субщелочных пикритов, сопоставимые с жильными "кимберлит-пикритами" [3]. Значительная часть дайковых ультрабазитов Четласского комплекса сложена карбонатсодержащими лампрофирами, которые содержат в базисе, наряду с флогопитом и пироксеном, карбонат (по-видимому, ювенильного происхождения) – 20–50%, апатит, амфибол, гранат. Эти породы, согласно классификации лампрофиров, могут быть отнесены к айликитам [29]. Необходимо отметить, что в этих породах отсутствует редкометально-редкоземельная минерализация.

Щелочные разности лампрофиров развиты локально, на отдельных участках, в частности, на участке Косью. Они представляют собой "лампроитоподобные пикриты", содержащие значительное количество вкрапленников оливина (до 45%), клинопироксена и флогопита, а также мегакристы оливина и буровато-зеленой шпинели; базис в них сложен игольчатым синевато-зеленым амфиболом, карбонатом, апатитом и тетраферрифлогопитом. Вкрапленники оливина замещены серпентином и карбонатом, а по краям зерен замещенного оливина образуется кайма, сложенная волокнистым амфиболом, тетраферрифлогопитом и магнетитом. В этих породах залегают многочисленные жилы карбонатитов и флогопитовых метасоматитов, содержащие редкометальную минерализацию. На участке Косью карбонатиты образуют шток диаметром 300 м (массив р. Косью), приуроченный к раздуву дайки ультрабазитов. Жилы карбонатитов также встречаются и во вмещающих фенитизированных осадочнометаморфических породах.

Жилы карбонатитов сложены мелко- и микрозернистым доломит-анкеритовым агрегатом (реже кальцитом, магнезитом) и флогопитом, иногда содержат амфиболы, эгирин, КПШ, альбит, кварц. По контактам с карбонатитами образуются флогопитовые метасоматиты (по ультрабазитам) и фениты (по вмещающим кварцито-песчаникам). Среди акцессорных минералов в карбонатитах Косью установлены редкометальные и редкоземельные минералы – пирохлор, колумбит, монацит, ильменорутил, бастнезит, бадделеит, циркон, барит, торит, ортит, а также сфен, апатит, магнетит, пирит, ильменит и др. [3–5].

Химический состав карбонатитов и лампрофиров Четласского комплекса представлен в табл. 1. Вариации петрогенных элементов в карбонатитах Четласского комплекса соответствуют составам феррокарбонатитов, реже – магнезиокарбонатитов и кальциокарбонатитов.

ГЕОХИМИЧЕСКАЯ ХАРАКТЕРИСТИКА ПОРОД

Содержания редких элементов в карбонатитах и лампрофирах Четласского комплекса приведены в табл. 1 и иллюстрируются на рис. 1, 2.

Геохимия лампрофиров Четласского комплекса охарактеризована ранее [3, 6, 9]. Карбонатсодержащие лампрофиры по содержанию редких элементов близки (но не идентичны) карбонатитам кимберлитовых ассоциаций [17, 28] и также несколько отличаются от карбонатитов различных формационных типов (рис. 1б). Они характеризуются обогащением как совместимыми (Ni, Co, Cr), так и несовместимыми элементами (Nb, Sr, Ba). В них довольно высокие содержания (г/т) Ni (120–460), Co (35–50), Cr (170-895) и пониженные Ва (500-1780), Sr (165-1500), Nb (75-110), РЗЭ (40-490) по сравнению с карбонатитами. На диаграммах Co-Ni и Cr-Ni эти породы занимают промежуточное положение между составами кимберлит-карбонатитов и составами классических карбонатитов [8, 9].

Индикаторные отношения Sr/Ba, Nb/Ti, Ni/Co (которые используются для различия конвергентных карбонатных пород, связанных с ультраосновным щелочным магматизмом - карбонатитов формации УЩК и карбонатитов кимберлитовой формации [18]) в карбонатсодержащих лампрофирах, также имеют промежуточные значения. Так для них характерны более высокие отношения Ni/Co (3-10) и более низкие Nb/Ti (0.01-0.02) по сравнению с карбонатитами ((Ni/Co – 0.5 и 1.25), (Nb/Ti – 0.14 и 0.13) – соответственно для средних составов карбонатитов Карело-Кольской провинции и среднего карбонатита формации УЩК [18]). Отношение Sr/Ba в них обычно низкие (0.2–0.7), близкие таковым в лампрофирах Четласского комплекса. Лишь в отдельных пробах карбонатсодержащих лампрофиров Четласского комплекса Sr преобладает над Ва, и Sr/Ba отношение достигает более высоких значений (Sr/Ba = 3-4), характерных для карбонатитов малоглубинных и вулканических комплеков [11].

Суммарные содержания РЗЭ в карбонатсодержащих лампрофирах и лампрофирах Четласского комплекса близки между собой и варьируют от 40 до 500 г/т. Спектры распределения РЗЭ в карбонатсодержащих лампрофирах близки спектрам лампрофиров (рис. 2а). Значение Eu/Eu* в лампрофирах (0.96–0.89) и в карбонатсодержащих лампрофирах (0.9–1.0) Четласского комплекса близко к 1 (что характерно для первично мантийных систем) и лишь в поздних разностях карбонатсодержащих пород Eu/Eu* снижается до 0.85–0.77.

Собственно карбонатиты Четласского комплекса имеют высокие и сильно варьирующие содержания (г/т) Ва (1600–3000), Sr (1060–7000), Nb (до 260), РЗЭ (6600–8800) (рис. 1а, табл. 1) и более низкие содержания Ni (8–145), Co (1–44), Cr (9–187) по сравнению с лампрофирами и карбонатсодержащими лампрофирами. При этом для карбонатитов Четласского комплекса характерны более высокие индикаторные отношения Nb/Ti (0.03–0.09) и низкие Ni/Co (1–4), а также уменьшение Zr/Hf, Y/Ho,

НЕДОСЕКОВА и др.

Таблица 1. Химические составы (мас.%) и содержания редких элементов (г/т) в породах Четласского комплекса

№ п/п	1	2	3	4	5	6	7	8	9	10	11	12	13	14
№ обр	1290	1320-5	1284	1385-7a	1342-2	1270-1	1328	1224-2	450	1374	1389	1385-5	1385/21	1228-4
SiO ₂	38.34	37.92	41.58	34.02	30.42	32.62	35.64	33.1	16.66	13.88	28.76	28.96		
TiO ₂	1.67	1.74	1.39	0.69	1.45	1.41	1.61	1.13	0.14	0.1	1.21	1.1		
AI_2O_3	11.45	10.05	9.54	5.42 10.2	9.11	9.05	9.04	/.14 87	3.20	0.1	14.6	0.00		
FeO	5 46	6.21	4 87	3.63	5 75	3.81	14.5	2.97	6.89	745	6 56	377		
МпО	0.23	0.27	0.18	0.3	0.18	0.19	0.34	0.17	1.64	1.87	1.08	0.68		
MgO	14.27	16.66	17.01	26.32	12.66	13.8	12.72	15.97	9.25	9.22	15.76	16.13		
CaO	14.69	10.75	12.61	6.51	16.23	17.06	7.76	9.72	15.48	26.68	10.75	14.58		
Na_20	1.23	1.47	0.66	0.49	0.9	0.59	0.18	3.68	2.34	0.31	0.34	1.48		
$\mathbf{K}_{2}\mathbf{O}$	2.3	1./0	3.14	2.58	5.19	3.72	4.24	3.6/	1.37	0.05	1.38	4.39		
$\Gamma_2 O_5$	2.06	2.17	1.01	3.98	0.78	6.84	10.52	13 34	25 25	30.67	9.66	9.46		
H_2O	0.3	0.5	0.37	0.86	0.1	0.67	0.25	0.1	2.32	0.1	0.3	0.16		
ΠΠΠ	4.25	4.96	3.1	11.73	12.54	9.99	12.6	16.38	27.57	30.69	13.78	11.95		
Сумма	99.53	98.55	98.59	98.77	98.58	98.58	99.15	99.81	99.52	99.14	98.63	98.5		
Sc	29.8	20.5	27	6.4	22	27	22.2	15	5.3	0.35	12	22.0	1.5	1.0
	9382	98/5	//60	2790	8216	256	864/	4845	2085	34	185	5/38 122	34	69
Cr	514	532	1511	621	484	504	352	895	168	22	185	493	8	3
Co	52	59	50	84	51	40	37	45	35	8	44	39	14	7
Ni	222	382	364	649	235	130	119	466	330	8	110	145	16	93
Cu	78	100	61	40	80	128	39	46	50	4	78	27	43	3
Zn	69 77	85	46	152	55 101	52	33 195	50	69	106	124	69 127	65 1	9
Sr	993	612	407	1085	1169	1519	165	447	1456	7043	1063	1310	3838	2475
Y	20	18	14	10	22	22	17	23	2	9	20	20	95	4
Zr	104	203	100	37	82	128	90	92	4	8	96	82	4	3
Nb	116	156	71	100	110	169	96	75	106	3	262	196	20	0.3
Mo	1.80	4.21	1.80	35 11 2	2.64	1.8/	1.40	0.34	3.98	65	12	3/	0.22	H/O
Ba	2.02	2428	884	2725	1780	2.97	8.00	613	508	1596	2518	2994	629	41
La	129	62	54	476	84	122	74	49	9	3727	3397	2610	1960	71
Ce	218	132	107	471	156	222	153	91	20	4126	4227	3131	2879	89
Pr	22.1	15.2	11	39	17	21.6	16.5	9.8	2.1	277	305	228	238	6.0
Nd	72.8	56.6	41	104	62	10.2	58.2	36	7.4	768	/64	579	641 52	16.5
En	9.8	9.2	1.8	2	25	10.2	9.0		0.3	39 7	9	55.4 73	11	0.4
Gd	7.2	6.9	5	5	7	7.3	6.1	6	0.6	22	23	22.6	36	1.0
Tb	0.79	0.80	0.54	0.58	0.93	0.82	0.70	0.91	0.07	0.95	1.67	1.08	3	0.10
Dy	4.64	4.76	3	3	5	4.87	4.04	6	0.40	3	7	6.05	21	0.63
Ho	0.83	0.78	0.58	0.52	0.93	0.87	0.70	1.08	0.08	0.48	1.04	0.93	4	0.12
Tm	0.30	0.26	0.19	0.16	0.31	0.31	0.23	0.43	0.22	0.15	2.38	$ \begin{array}{c} 2.12 \\ 0.28 \end{array} $	1.65	0.30
Yb	1.81	1.71	1.24	0.90	1.85	2.13	1.59	2.84	0.03	0.13	1.33	1.50	10	0.39
Lu	0.24	0.26	0.18	0.12	0.26	0.32	0.21	0.42	0.04	0.09	0.18	0.21	1.45	0.07
Hf	2.66	3.78	2.58	0.81	1.87	2.62	2.14	2.32	0.07	0.94	3.02	1.91	0.19	0.05
Ta	3.72	9.28	3	5	5.35	12.90	7.88	3.7	0.38	0.06		8.94	0.06	0.00
Th	9.11	0.98	3	25	37	5.05 14.4	1.08	45	10.55	18	20	22.04	29 165	2.8
U	5.29	1.66	2	1	4	4.45	1.18	0.48	0.25	0.21	2.69	0.54	6	0.06
РЗЭ+Ү	492	312	247	531	371	492	345	239	43	8981	8805	6645	5967	191
TR_{Ce}/TR_{Y}	15	10	11	65	8	14	12	4.5	15	240	153	205	120	28
Eu/Eu*	0.94	0.99	0.94	0.89	0.97	1.0	0.86	1.0	0.77	0.67	0.72	0.74	0.74	1.08
V/H_0	$\frac{71}{24}$	30 23	44	529 10	45 24	25	4/	1/21	42	10	2554	1/40	196 24	182
Ni/Co	4	6	7	8	5	$\frac{23}{3}$	3	10^{21}	9	1	3	4	1	13
Sr/Ba	0.84	0.25	0.46	0.40	0.66	0.68	0.19	0.73	2.9	4	0.42	0.44	6	60
Nb/Ti	0.01	0.02	0.01	0.04	0.01	0.02	0.01	0.02	0.05	0.09	0.05	0.03	0.59	0.004
Nb/Ta 7r/Hf	31	17	24	20	21	13	12	20	148	50	26	22	333	60
L1/111	57	J J4	57	1 4 0	44	47	42	1 4 0	51	ノフ	<u> </u>	1 4 3	∠1	00

Примечание. Силикатный анализ выполнен в лаборатории химии минерального сырья ИГ Коми НЦ УрО РАН, 2011 г. Анализ редких элементов выполнен методом ICP-MS (ИГГ УрО РАН, Екатеринбург, 2010. 1–2 – спессартиты, 3 – керсантит с мегакристами Срх и Sp; 4 – пикрит "лампроитоподобный"; 5–9 – карбонатсодержащие лампрофиры (айликиты); 10–12 – анкерит-доломитовые карбонатиты (с апатитом, флогопитом, хлоритом, иногда кварцем) и РЗЭ-Nb минерализацией; 13–14 – карбонатные прожилки в фенитах с РЗЭ-Nb минерализацией.

ЕЖЕГОДНИК-2012, Тр. ИГГ УрО РАН, вып. 160, 2013

Рис. 1. Спайдер-диаграммы карбонатитов (а) и лампрофиров (б) Четласского комплекса.

Концентрации элементов нормализованы по примитивной мантии [31]. Для сравнения приведены средние составы РЗЭ в карбонатитах по [33]: 1 – кальциокарбонатит, 2 – магнезиокарбонатит, 3 – феррокарбонатит.

Eu/Eu* (0.67–0.77), что обычно отмечается для заключительных стадий карбонатитообразования [12] и флюидных карбонатных систем [22].

В целом, карбонатиты Четласского комплекса по содержаниям редких элементов близки средним составам магнезио- и феррокарбонатитов [33], отличаясь очень низкими содержаниями HREE и соответственно высокими La/Yb (до 6540) и LREE/HREE (до 240) отношениями. Эти особенности наглядно иллюстрируются спектрами распределения РЗЭ в карбонатитах Косью (рис. 2а) и сходны с распределением РЗЭ в породах лампроитовых комплексов. Необходимо также отметить низкие Sr/Ba (0.4-4) отношения (за исключением апатитсодержащих разностей), что характерно для вулканических и малоглубинных карбонатитов [11], а также несколько повышенные содержания в них Cr, Ni, Co, что характерно для карбонатитов, образующихся из К-ультраосновных пикрит-кимберлитовых магм [32].

ИЗОТОПНЫЙ СОСТАВ УГЛЕРОДА И КИСЛОРОДА КАРБОНАТОВ

Изотопный состав С и О в карбонатах Четласского комплекса был определен в ИГ Коми УрО РАН, г. Сыктывкар (аналитик И.В. Смолева). Разложение карбонатов и измерение изотопного состава С и О в режиме непрерывного потока производились на аналитическом комплексе, включающем в себя систему подготовки и ввода проб Gas Bench II, соединенную с масс-спектрометром DELTA V Advantage (ThermoFinnigan). Значения δ^{13} С даны в промилле относительно стандарта PDB, δ^{18} O – стандарта SMOW. Ошибка определения δ^{13} С и δ^{18} O не превышает ±0.15 ‰ (1 σ).

Состав изотопов С и О определен для карбонатов из карбонатсодержащих лампрофиров и карбонатитов Четласского комплекса и представлен в табл. 2 и на рис. 3. На рис. 3 также приведены изотопные со-

Рис. 2. Хондритнормализованное распределение РЗЭ в карбонатсодержащих лампрофирах (а) и карбонатитах (б) Четласского комплекса.

Для сравнения приведены распределения P3Э: а) в лампрофирах Четласского комплекса (серое поле) и в айликитах комплекса Айлик Бей (пунктир) по [29]; б) в среднем кальциокарбонатите (штрихпунктир), в магнезиокарбонатите (пунктир) и феррокарбонатите (точечный пунктир) по [33].

Рис. 3. Изотопный состав С и О в породах Четласского комплекса.

Поля составов: РС I – первичных карбонатитов [27], РС II – первичных карбонатитов [28], NSC – морских нормальноосадочных карбонатов, SC – почвенных карбонатов [30]. Сплошной жирной линией обозначен мантийный квадрат по [34]. Для сравнения пунктирными линиями показаны тренды эволюции изотопного состава С и О в карбонатитовых комплексах УЩК Кольской и Скандинавской провинции [24]: I – Хибины, II – Салланлатви, III – Сокли. 1– карбонатсодержащие лампрофиры, 2 – карбонатиты, 3 – карбонатные прожилки в фенитах, 4 – карбонатиты по [3], 5 – карбонат в основной массе в пикритах [3].

ставы С и О в карбонатитах и ультрабазитах Четласского комплекса по [3]. Полученные нами результаты в целом согласуются с данными В.И. Степаненко [12], А.Б. Макеева [6], Т.Г. Шумиловой с соавторами [20]. Вариации изотопного состава С и О в карбонатах из карбонатсодержащих лампрофиров и карбонатитов Четласского комплекса находятся в пределах полей составов, характерных для мантий-

ЕЖЕГОДНИК-2012, Тр. ИГГ УрО РАН, вып. 160, 2013

ных систем и первично-магматогенных карбонатитов [28, 34] (рис. 3). Точки составов изотопов С и О формируют тренд от карбонатсодержащих лампрофиров к карбонатитам с утяжелением изотопного состава б¹⁸О (от 8.3 до 15.2 ‰) при менее значительном увеличении $\delta^{13}C$ (-4.9...-3.1 ‰) и в целом соответствуют тренду фракционирования изотопов С и О при эволюции карбонатных мантийных систем и находятся ниже верхнего предела релеевского изотопного фракционирования [23]. Смешение значений δ^{18} O и δ^{13} C карбонатитов в область повышенных значений относительно лампрофиров и карбонатсодержащих лампрофиров соответствует тренду релеевского изотопного фракционирования (с наклоном линии регрессии ~ 0.4), происходящего при кристаллизационной дифференциации карбонатитового расплава с образованием относительно обедненных ¹³С и ¹⁸О твердых фаз и отделением флюидной фазы, обогащенными этими изотопами [28]. Наклон линии регрессии для карбонатитов Четласского комплекса равен 0.36 и в целом согласуется с генеральной линией регрессии релеевского изотопного фракционирования, упомянутой выше, а также с трендами эволюции изотопного состава С и О в некоторых классических карбонатитовых комплексах ультраосновной щелочной формации [24] (рис. 3).

Rb-Sr, Sm-Nd-ИЗОТОПНЫЕ СОСТАВЫ ПОРОД И МИНЕРАЛОВ

Определение изотопного состава Sr и Nd в карбонатах было выполнено в ИГГ УрО РАН массспектрометрическим методом изотопного разбавления с использованием аналитического комплекса на базе TIMS Triton Plus. Были исследованы изотопные составы Sr и Nd в карбонатах и апатитах из карбонатитов Четласского комплекса. Кроме того, было проведено изучение изотопного состава Sr и Nd в валовых пробах лампрофиров, а также в кислотных вытяжках из карбонатсодержащих лампрофиров.

Состав изотопов Sr и Nd в минералах и породах Четласского комплекса приведен в табл. 3.

Измеренные ⁸⁷Sr/⁸⁶Sr отношения в кальцитах и апатитах могут рассматриваться как первичные, так как в них низкие Rb/Sr отношения. Первичные отношения ¹⁴³Nd/¹⁴⁴Nd в породах и минералах рассчитаны на возраст 590 млн. лет, полученный при К-Аг-датировании карбонатитов Четласского комплекса [3].

Первичные отношения изотопов стронция в карбонатах (87 Sr/ 86 Sr = 0.70336–0.70364) и апатитах (0.70300) из карбонатитов Четласского комплекса находятся в интервале, типичном для пород с мантийным источником и близки, но несколько ниже таковых в неизмененных лампрофирах (87 Sr/ 86 Sr = 0.7041–0.7043), значительно отлича-

Таблица 2. Состав изотопов С и О в карбонатах Четласского комплекса

N⁰	№ обр.	δ ¹³ C,	δ ¹⁸ Ο,	Порода
Π/Π	-	‰ PDB	‰ SMOW	-
1	1374	-3.4	15.2	доломитовый карбо-
				натит
2	1371	-3.6	12.8	_ " _
3	1270-1	-4.1	8.3	карбонатсодержащий
				лампрофир
4	T-412	-3.5	11.3	_ " _
5	T-450	-3.7	9.9	_ " _
6	T-461	-3.6	10.2	пикрит карбонатизи-
				рованный
7	1228-4	-4.9	10.8	карбонатная жилка
				фенитах
8	1385-21	-3.1	14.6	_ " _

Примечание. Определение изотопного состава С и О было проведено в ИГ Коми УрО РАН, г. Сыктывкар (аналитик И.В. Смолева). Ошибка определения δ^{13} С и δ^{18} О не превышает ±0.15 ‰ (1 σ).

ясь от лампрофиров, претерпевших посткристаллизационные гидротермально-метасоматические изменения и имеющих более радиогенный состав стронция (87 Sr/ 86 Sr = 0.711) [1, 7].

Первичные отношения изотопов Nd в карбонате ((¹⁴³Nd/¹⁴⁴Nd)₅₉₀ = 0.512194–0.512183, єNd = 5.07–5.61) и в апатите ((¹⁴³Nd/¹⁴⁴Nd)₅₉₀ = 0.512190, єNd = 5.8) из карбонатитов Четласского комплекса показывают гомогенные, обедененные в отношении нерадиогенного неодима и близкие неизмененным лампрофирам ((¹⁴³Nd/¹⁴⁴Nd)₅₉₀ = 0.512317–0.512235, єNd = 5.42–6.19) значения изотопных отношений. Изотопный состав Nd в кислотных вытяжках из карбонатсодержащих лампрофиров Четласского комплекса также показал близкий изотопный состав неодима (¹⁴³Nd/¹⁴⁴Nd)₅₉₀ = 0.512227, єNd = 5.67.

Таким образом, изучение изотопного состава Sr и Nd в минералах (карбонатах и апатитах) карбонатитов показало близкие лампрофирам первичные отношения изотопов стронция и неодима $((^{87}Sr/^{86}Sr)_0 = 0.70300-0.70364$ и ϵ Nd = 5.07–5.8), что может свидетельствовать о "первичности" карбонатов и едином, вероятно, мантийном источнике карбонатитов и лампрофиров Четласского комплекса.

В настоящее время обсуждается возможность образования карбонатитов Четласского комплекса как в результате внедрения флюидонасыщенного богатого CO_2 ультраосновного расплава с образованием дайковых ультрабазитов и отделением карбонатитового расплава-флюида, формирующего карбонатиты [3], так и при более поздних процессах карбонатизации дайковых ультрабазитов, которая имеет метаморфогенный источник флюида [6, 7]. Rb-Sr изохроны валовых проб лампрофиров [7] показали возраст $T = 819 \pm 19$ млн. лет с

бонатитов Чегласского комплекса 590 млн. лет [3]. Величины г₈₁ и г_{Nd} рассчитаны относительно модельных резервуаров UR (^{s7}Rb/⁸⁶Sr = 0.0816, ^{§7}Sr/⁸⁶Sr = 0.7045) и CHUR (¹⁴⁷Sm/¹⁴⁴Nd = 0.1967, ¹⁴³Nd/¹⁴⁴Nd = 0.512636); Т_(M) – модельный возраст, рассчитан относительно деплетированной мантии DM по [25, 26]. 1–2 – минералы из карбонатитов, Тримечание. Погрешности значений (2о) для ⁸⁷Sr/⁶⁸Sr не превышают 0.01%, для ¹⁴³Nd/¹⁴⁴Nd - 0.002%. Первичное отношение изотопов неодима рассчитано на возраст кар- – валовые пробы 3 – из айликитов, 4–5 – кислотные вытяжки из валовых проб карбонатсодержащих пород (айликитов и силикокарбонатитов), 6–7 первичным отношением $({}^{87}\text{Sr}/{}^{86}\text{Sr})_{819} = 0.70421 \pm 16$. При этом, часть точек лампрофиров образуют эволюционную зависимость с более молодым возрастом 530 ± 10 млн. лет и высоким первичным отношением $({}^{87}\text{Sr}/{}^{86}\text{Sr})_{530} = 0.71099 \pm 11$, что интерпретируется авторами как возраст посткристаллизационного преобразования лампрофиров в результате гидротермально-метасоматической переработки (одновозрастной с карбонатитами) с метаморфогенным источником флюида.

Полученные нами изотопные данные для минералов карбонатитов Четласского комплекса (низкие 87 Sr/ 86 Sr = 0.70300–0.70364 и высокие первичные отношения изотопов неодима – ($\epsilon Nd_{590} = 5.07 - 5.8$) близки первичным изотопным отношениям лампрофиров, что свидетельствует о едином глубинном источнике карбонатитов и лампрофиров и не подтверждает предположений о метаморфогенном источнике карбонатитообразующего флюида. Значительные вариации первичных изотопных составов Sr в лампрофирах (⁸⁷Sr/⁸⁶Sr = 0.704–0.711) [8] и Nd (ϵ Nd = 1.47-5.36) [1], вероятно, не связаны с карбонатитообразованием и могут определяться контаминацией исходным расплавом корового материала, а также поздними гидротермальнометасоматическими процессами, проявленными в породах комплекса.

ЗАКЛЮЧЕНИЕ

Карбонатиты в Четласском комплексе ассоциируют со щелочными разностями лампрофиров и имеют высокие варьирующие содержания (г/т) РЗЭ (6600–8800), Ba(1600–3000), Sr (1060–7000), Nb (до 260), Ti (35–5700), Zr (до 100), V (до 185), Th (до 80), Ta (до 10), Hf (0.4–3), а также P_2O_5 (до 6%) и F (до 1%), которые в целом сопоставимы с карбонатитами УЩК, отличаясь от них более высокими содержаниями Ni (8–145), Co (8–44), Cr (20–500), а также экстремально высокими отношениями La/Yb (1750–6540) и LREE/HREE (150–240), что характерно для карбонатитов, образующихся из калиевых щелочноультраосновных магм. С карбонатитами связана P3Э-Nb-Zr-минерализация.

Наряду с карбонатитами, в Четласском комплексе широко развиты карбонатсодержащие лампрофиры, содержащие в основной массе, помимо флогопита и пироксена, ювенильный карбонат, апатит, амфибол, гранат, оксиды. Редкометальноредкоземельная минерализация в этих породах не установлена. По содержанию редких элементов они близки, но не идентичны карбонатитам кимберлитовых ассоциаций, занимая промежуточное положение между кимберлитовыми карбонатитами и карбонатитами других формационных типов. Они характеризуются одновременным обогащением как совместимыми (Ni, Co, Cr), так и несовместимыми (Ba, Sr, Nb, P3Э) элементами. При этом содержания несовместимых элементов в них более низкие, а совместимых элементов более высокие по сравнению с карбонатитами Четласского комплекса.

Изотопные составы С и О карбонатов Четласского комплекса находятся в пределах полей составов, характерных для мантийных систем и первичномагматогенных карбонатитов, образуя непрерывный тренд от карбонатсодержащих лампрофиров к карбонатитам, характеризующийся утяжелением изотопного состава δ^{18} O (от 8.3 до 15.2 ‰) и δ^{13} C (-3.1...-4.9 ‰) и соответствующий тренду фракционирования мантийных изотопных систем.

Первичные изотопные составы минералов карбонатитов (⁸⁷Sr/⁸⁶Sr = 0.70300–0.70364; єNd = 5.07–5.61) близки первичным изотопным составам лампрофиров и свидетельствуют о едином глубинном, вероятно, мантийном источнике карбонатитов и лампрофиров Четласского комплекса и не подтверждают предположений о метаморфогенном источнике карбонатитообразующего флюида.

Авторы выражают глубокую признательность В.Л. Андреичеву и коллективам лабораторий ФХМИ ИГГ УрО РАН и Коми УрО РАН и за выполнение минералогических, геохимических и изотопных исследований.

Работа выполнена при поддержке программ фундаментальных исследований УрО РАН № 12-C-5-1031 и 12-П-5-2015.

СПИСОК ЛИТЕРАТУРЫ

- Брянчанинова Н.И., Макеев А.Б., Ларионова Ю.О. Sm-Nd изотопная систематика лампрофиров Тимана // Новые горизонты в изучении процессов магмои рудообразования: тез. Всерос. конф. М.: ИГЕМ РАН, 2010. С. 414–415.
- Ивенсен Ю.П. Магматизм Тимана и полуострова Канин. Л.: Наука, 1964. 126 с.
- Костюхин М.Н., Степаненко В.И. Байкальский магматизм Канино-Тиманского региона. Л.: Наука, 1987. 232 с.
- Ковальчук Н.С., Шумилова Т.Г., Козырева И.Г. Минералогия редкоземельных фаз косьюских карбонатитов // Минералогическая интервенция в микро- и наномир: мат-лы. Междунар. минерал. семинара. Сыктывкар: ИГ Коми НЦ УрО РАН, 2009. С. 296–297.
- Ковальчук Н.С. Эволюция химического состава пирохлора из карбонатитов Косьюского массива // Структура, вещество, история литосферы Урало-Тиманского сегмента. Сыктывкар: Геопринт, 2011. С. 74–76.
- Макеев А.Б., Лебедев В.А., Брянчанинова Н.И. Магматиты Среднего Тимана. Екатеринбург: УрО РАН, 2008. 348 с.
- 7. Макеев А.Б., Андреичев В.Л., Брянчанинова Н.И. Возраст лампрофиров Среднего Тимана: первые Rb-

ЕЖЕГОДНИК-2012, Тр. ИГГ УрО РАН, вып. 160, 2013

Sr данные // Докл. АН. 2009. Т. 426, № 1. С. 94–97.

- Недосекова И.Л., Владыкин Н.В., Прибавкин С.В., Баянова Т.Б. Ильмено-Вишневогосркий миаскиткарбонатитовый комплекс: происхождение, рудоносность, источники вещества (Урал, Россия) // Геол. руд. мест. 2009. Т. 51. № 2. С. 157–181.
- Недосекова И.Л., Удоратина О.В., Владыкин Н.В., Прибавкин С.В., Гуляева Т.Я. Петрохимия и геохимия дайковых ультрабазитов и карбонатитов Четласского комплекса (Средний Тиман) // Ежегодник-2010. Тр. Ин-та геол. им. акад. А.Н. Заварицкого. Вып. 158. 2011. С. 122–130.
- 10. Самойлов В.С. Карбонатиты (фации и условия образования). М.: Наука, 1977. 290 с.
- 11. Самойлов В.С. Геохимия карбонатитов. М.: Наука, 1984. 190 с.
- Самойлов В.С., Смирнова Е.А. Поведение редкоземельных элементов в процессе карбонатитообразования и некоторые аспекты генезиса карбонатитов // Геохимия. 1980. № 12. С. 1844–1858.
- Степаненко В.И. Особенности геологического строения и состава карбонатитового комплекса Среднего Тимана // Тр. Ин-та геологии Коми фил. АН СССР. Вып. 29. 1979. С. 52–61.
 Степаненко В.И. Геохимия докембрийских гидро-
- Степаненко В.И. Геохимия докембрийских гидротермально-метасоматических образований Среднего Тимана // Тр. Ин-та геологии Коми фил. АН СССР. Вып. 34. 1981. С. 25–34.
- 15. Степаненко В.И. Карбонатитовый комплекс Среднего Тимана. Автореф. канд. дис. Свердловск. 1982. 24 с.
- 16. Степаненко В.И., Суханов Н.В. Изотопный состав углерода и кислорода карбонатитов Среднего Тимана //Докл. АН СССР. 1980. Т. 251, № 3. С. 699–702.
- Францессон Е.В., Черная И.П. Кимберлиты Среднего тимана // Методы крупномасштабного прогноза месторождений алмазов. Тр. ЦНИГРИ. Вып. 182. М., 1983. С. 53–63.
- Фролов А.А., Лапин А.В., Толстов А.В. и др. Карбонатиты и кимберлиты. М.: НИА-Природа, 2005. 540 с.
- Шумилова Т.Г., Филиппов В.Н., Каблис Г.Н. Графит и его псевдоморфозы по алмазу в карбонатитах Косьюского массива (Тиман) // Алмазы и благородные металлы Тимано-Уральского региона: мат-лы Всерос. совещ. Сыктывкар: Геопринт, 2006. С. 137–138.
- Шумилова Т.Г., Ковальчук Н.С., Мингалев А.Н., Диваев Н.К. Изотопный состав углерода и кислорода карбонатов карбонатитов Косьюского массива (Средний Тиман) // Вестник Коми НЦ УрО РАН. 2012. № 4. С. 9–13.
- 2012. № 4. С. 9–13.
 21. Черный В.Г. Генетические типы редкометальных руд, связанных с ультраосновной-щелочной магматической формацией на Тимане // Метасоматизм и рудообразование. Л.: Наука, 1972. С. 205–206.
- Bau M. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lantanide tetrad effect // Contrib. Mineral. Petrol. 1996. V. 123. P. 323–333.
- 23. *Deines P.* Stable isotope variations in carbonatites // Carbonatites: genesis and evolution. London: Unwin Hyman. 1989. P. 301–359.
- 24. Demeny A., Sitnikova M.A., Karchevsky P.I. Stable C

and O isotope composition of carbonatites complex of the Kola Alkaline Province // Phoscorites and carbonatites from mantle to mine: the key Example of the Kola Alkaline Province. London: Mineralogical Society of Great Britian and Ireland, 2004. P. 407–431.

- DePaolo D.J. Neodymium isotopes in the Colorado Frant range and crust-mantle evolution in the Proterozoic // Nature. 1981. V. 291. P. 193–196.
- DePaolo D.J. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallisation // Earth Planet. Sci. Lett. 1981. V. 53. P. 189–202.
- Keller I., Hoefs I. Stable isotope characteristics of recent natrocarbonatite from Oldoinyo Lengai // Carbonatite volcanism: Oldoinyo Lengai and the petrogenesis of natrocarbonatites, 1995. Proc. Vulcanol. V. 4. P. 113–236.
- Ray I. S., Ramesh R. Rayleigh fractionation of stable isotopes from a multicomponent source// Geochim. et Cosmochim. Acta. 2000. № 64. P. 299–306.

- Rock N.M.S. The nature and origin of Ultramafic Lamprophyres: Alnoites and Allied Rocks // J. Petrology. 1986. № 27. P. 155–196.
- 30. Salomons W. Chemical and isotopic composition of carbonatites in recent sediments and soils from Western Europe // J.Sediment. Petrol. 1975. V. 45. № 2. P. 440–449.
- Sun S, McDonough W.F.Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes // Geoll Soc, 1989. № 42. P. 313–345.
- 32. Vladykin N.V. Potassium alkaline lamproite-carbonatite complexes: petrology, genesis, and ore reserves // Geology and Geophysics. 2009. № 50. P. 1–10.
- Wooley A.R., Kempe D.R.C. Carbonatite: nomenclature, average chemical compositions and element distributions // Carbonatites: genesis and evolution. London: Unwin Hyman, 1989. P. 1–14.
- 34. *Yavoy M., Pineau F.* Carbon and nitrogen isotopes in the mantle // Chem. Geol. 1986. V. 57. P. 41–62.