ПЕТРОЛОГИЯ, ГЕОХИМИЯ

ПОВЕДЕНИЕ РЕДКИХ ЭЛЕМЕНТОВ В УЛЬТРАМАФИТАХ УРАЛА: II. ПРОГРЕССИВНЫЙ МЕТАМОРФИЗМ ПЕТЕЛЬЧАТО СЕРПЕНТИНИЗИРОВАННЫХ УЛЬТРАМАФИТОВ

© 2013 г. И. С. Чащухин, Н. В. Чередниченко, Н. Н. Адамович

Статья продолжает изучение геохимии редких элементов в дунит-гарцбургит-лерцолитовых комплексах Урала [5, 6] и посвящена их поведению в ходе постсерпентинового метаморфизма на примере ультрамафитов массивов Войкаро-Сыньинского и Крака.

Исследования А.А. и Г.Н. Савельевых показали, что около 50% площади выходов ультрамафитов Войкаро-Сыньинского массива сложено апогарцбургитовыми оливин-антигоритовыми породами [1]. Ими выделены массивные оливинантигоритовые породы и оливин-антигоритовые сланцы. По аналогии с Альпами и массивом Рай-Из, эти породы сложены парагенетическими ассоциациями, различающимися, в основном, по составу известковой фазы – в массивных она представлена тремолитом, в сланцах – диопсидом [4, 8].

В ненарушенных тектоникой разрезах массивными Сг-магнетит-клинохлор-тремолит-антигоритоливиновыми породами сложены центральные зоны, к периферии сменяющиеся сначала оталькованными, а затем тремолитизированными ультрамафитами [3]. Эти зоны – результат метаморфизма в условиях эпидот-амфиболитовой фации, различающиеся по соотношению общего давления и

Рис. 1. Спектры РЗЭ оливин-антигоритовой пород Войкаро-Сыньинского массива.

Нормированные на примитивную мантию спектры РЗЭ лерцолита (1), гарцбургита (2), массивной (3) и сланцевой (4) оливин-антигоритовой породы.

давления воды. Равенство давлений достигалось в центральной зоне, в которой эдукты процесса были полностью перекристаллизованы с изменением первичной структуры породы. В стороны от центра при сохранении Р_s давление H₂O постепенно падало, что выразилось в незавершенности реакций, сохранности первичной структуры породы, реликтов ортопироксена и в постепенном сближении составов новообразованного и первичного оливинов.

Магнетит-клинохлор-диопсид-антигорит-оливиновые сланцы постоянно сопровождаются антигоритовыми серпентинитами, что также находит объяснение в соотношениях общего и водного давлений – в серпентинитах $P_s \approx P_{H_{2}O}$, в оливинантигоритовых сланцах $P_s > P_{H_{2}O}$. Поэтому есть основания предполагать, что обе эти породы есть результат прогрессивного метаморфизма петельчато серпентинизированных гарцбургитов в условиях зеленосланцевой фации. По соотношению извести и глинозема оба типа оливин-антигоритовых пород наследуют таковое в первичных ультрамафитах [3].

Концентрации редких элементов в изученных образцах приведены в табл. 1, нормированные на примитивную мантию [7] спектры РЗЭ в первичных ультрамафитах – лерцолитах 6012 и 6043 и продуктах их метаморфизма – массивной амфибололивин-антигоритовой породы 6444 и диопсидоливин-антигоритового сланца 6447 - на рис. 1. 3-7-кратная разница в концентрации РЗЭ между первыми двумя образцами отражает различие в масштабах ранней серпентинизации на фоне идентичности степени частичного плавления (содержания CaO и Al₂O₃). Между двумя типами оливинантигоритовых пород существенных различий нет. По сравнению с предполагаемым эдуктом (обр. 6043), спектр РЗЭ изменился слабо – несколько снизилась концентрация средних и тяжелых элементов и практически исчезла Eu-аномалия. По-видимому, метаморфизм проходил без участия внешнего источника воды и для его осуществления была использована вода, заключенная в продуктах ранней серпентинизации; судя по плотности пород, метаморфизм сопровождался удалением воды.

Другой продукт метаморфизма петельчато серпентинизированных ультрамафитов в условиях эпидот-амфиболитовой фации обнаружен в массивах Крака и представлен Сг-магнетит-клинохлор-тальк-

№ обр.	6012	6043	6444	6447	8642	8663	8796	8797
	лерцолит шпинелевый		оливин-антигоритовая		магнетит-клинохлор-	серпентинит		
порода			порода					
			массивная, с	сланец, с ди-	пальк-тремолит-	хризотил-лизардитовый		антигори-
			тремолитом	опсидом	оливиновая порода		-	товыи
Редкие элементы, г/т								
Li	0.006	0.003	0.003	0.001	0.001	0.000	0.000	0.001
Sc	18.183	10.965	18.280	12.324	14.754	14.264	14.777	12.597
Ti	32.358	17.157	23.560	16.588	20.503	26.279	27.415	20.202
Rb	1.869	0.513	0.285	0.232	0.839	0.699	1.213	0.777
Sr	1.558	0.937	4.093	1.002	2.770	0.664	0.354	2.389
Y	1.534	0.474	0.370	0.149	0.311	0.352	0.445	0.332
Zr	5.379	1.713	1.307	0.738	0.537	0.907	0.580	0.411
Nb	0.127	0.064	0.146	0.083	0.053	0.043	0.072	0.061
Cs	0.017	0.023	0.023	0.024	0.009	0.011	0.014	0.009
Ba	11.005	2.013	4.358	0.652	0.441	0.585	0.260	0.465
La	0.320	0.045	0.069	0.031	0.013	0.008	0.049	0.015
Ce	0.679	0.098	0.142	0.046	0.026	0.025	0.105	0.034
Pr	0.092	0.016	0.021	0.006	0.004	0.004	0.015	0.005
Nd	0.369	0.083	0.082	0.025	0.018	0.021	0.064	0.023
Sm	0.104	0.029	0.022	0.007	0.005	0.009	0.015	0.007
Eu	0.038	0.012	0.017	0.002	0.001	0.003	0.003	0.002
Gd	0.145	0.044	0.029	0.009	0.010	0.018	0.013	0.014
Tb	0.030	0.009	0.006	0.002	0.003	0.004	0.002	0.003
Dy	0.231	0.062	0.048	0.014	0.029	0.026	0.016	0.030
Но	0.054	0.016	0.012	0.003	0.008	0.006	0.004	0.008
Er	0.173	0.055	0.045	0.013	0.029	0.020	0.015	0.028
Tm	0.027	0.011	0.009	0.002	0.005	0.003	0.003	0.005
Yb	0.200	0.068	0.076	0.019	0.044	0.023	0.021	0.047
Lu	0.035	0.011	0.015	0.004	0.008	0.004	0.004	0.010
Hf	0.677	0.308	0.207	0.169	0.041	0.043	0.038	0.044
Та	0.006	0.001	0.000	0.000	0.000	0.000	0.002	0.000
W	0.034	0.023	0.057	0.102	0.000	0.005	0.203	0.000
Pb	6.934	8.890	5.433	8.446	3.829	2.568	0.733	3.138
Th	0.029	0.001	0.002	0.006	0.005	0.005	0.004	0.005
U	0.087	0.142	0.147	0.134	0.011	0.053	0.127	0.010
Компоненты, мас. %								
Al ₂ O ₃	1.48	1.00	0.84	0.68	1.38	0.69	_	-
CaO	1.27	1.29	0.77	0.43	0.59	0.63	_	-
Na ₂ O	0.091	0.025	0.073	0.267	0.019	0.002	_	0.001
ппп	1.01	9.59	6.88	9.22	12.78	12.8	-	-
σ, г/см ³	3.20	2.69	2.88	2.83	2.59	2.54	2.15	2.43
DS	9	70	43	49	88	100	100	100
Mt	0.05	0.13	0.27	0.38	3.28	7.33	8.04	5.64

Таблица 1. Концентрации редких и некоторых петрогенных элементов в ультрамафитах массивов Войкаро-Сыньинского и Крака

Примечание. Массивы: обр. 6012–6447 – Войкаро-Сыньинский, 8642 – Катарышский Крака, 8796–8797 – Узянский Крака. Привязка: 6012 – левый борт долины р. Правая Пайера, 6043 – междуречье р. Хойлы и ее правого притока; 8642 – левый борт долины руч. Катарыш, в 150 м от высоты 827.7 м; 8663 – строительный карьер у дороги Узянбаш-Узян; 8796–8797 – массив Узянский Крака, скальный выход в борту дороги Узянбаш-Узян. σ – плотность, г/см³; DS – степень серпентинизации; Мt – содержание ферромагнитного компонента в расчете на магнетит.

тремолит-оливиновыми породами (МКТТОП). Породы слагают Азяцкие и Катарышские горы, расположенные между массивами Узянский и Средний Крака [3]. В отличие от оливин-антигоритовых пород, процесс образования МКТТОП проходит с привлечением внешнего источника воды, о чем свидетельствует существенно бо́льшая величина потерь при прокаливании по сравнению с петельчато серпентинизированными ультрамафитами и нарушение первичных соотношений петрогенных элементов, например, Al₂O₃:CaO-отношения. Поведение РЗЭ подтверждает неизохимический характер процесса: если концентрации тяжелых РЗЭ (Tm-Lu) в целом близки таковым в петельчато серпентинизированных гарцбургитах, то с увеличением ионного радиуса РЗЭ наблюдается 2–3-кратное уменьшение

Рис. 2. Нормированные на примитивную мантию спектры РЗЭ Сг-магнетит-клинохлор-тальктремолит-оливиновой породы (1), антигоритового (2) и хризотил-лизардитовых (3, 4) серпентинитов в массивах Крака.

Серое поле - составы пород петельчато серпентинизированной гарцбургит-лерцолитовой серии Узянского Крака.

их содержаний (рис. 2). Появляется четкая отрицательная Се-аномалия.

Процессы вторичной серпентинизации – хризотил-лизардитизации и антигоритизации,- также в сильной степени искажают первичные соотношения РЗЭ (рис. 2). Особенно это характерно для антигоритовых серпентинитов: концентрация относительно когерентных средних и тяжелых РЗЭ снижается в 2-3 раза. В хризотил-лизардитовых серпентинитах, отобранных в серпентинитовой "кайме", окружающей гарцбургит-лерцолитовую серию массива Узянский Крака, и в зоне серпентинитового меланжа спектры РЗЭ в диапазоне Gd-Lu идентичны между собой и близки наиболее серпентинизированным гарцбургитам Узянского Крака. С увеличением ионного радиуса спектры РЗЭ резко расходятся, что может свидетельствовать о разных источниках флюидов, ответственных за хризотиллизардитизацию. В серпентинитах (за исключением зоны меланжа) резко увеличивается отрицательная Се-аномалия, что, по-видимому, неслучайно: известно, что такая аномалия характерна для зон рассланцевания, обеспечивающих транспортировку флюидов [2].

Вывод. Концентрации и сохранность первичных соотношений редких элементов при метаморфизме петельчато серпентинизированных ультрамафитов не зависят от фации метаморфизма и контролируются источником воды – внутренним за счет продуктов ранней серпентинизации при образовании оливин-антигоритовых пород и внешним для МКТТОП и хризотил-лизардитовых и антигоритовых серпентинитов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Савельев А.А., Савельева Г.Н. Войкаро-Сыньинский массив // Петрология и метаморфизм древних офиолитов (на примере Полярного Урала и Западного Саяна). Новосибирск: Наука, 1977. С. 60-91.
- 2. Скублов С.Г. Геохимия редкоземельных элементов в породообразующих метаморфических минералах. Санкт-Петербург: Наука, 2005. 146 с.
- Чащухин И.С., Вотяков С.Л., Щапова Ю.В. Кри-3. сталлохимия хромшпинели и окситермобарометрия ультрамафитов складчатых областей. Екатеринбург: ИГГ УрО РАН. 2007. 310 с.
- 4. Чащухин И.С., Перевозчиков Б.В., Царицын Е.П. Метаморфизм гипербазитов массива Рай-Из (Полярный Урал) // Исследования по петрологии и металлогении Урала. Свердловск: УНЦ АН СССР, 1986. C. 49-75.
- Чащухин И.С., Чередниченко Н.В., Адамович Н.Н. О 5. поведении редких элементов при ранней серпентинизации ультрамафитов // Ежегодник-2011. Тр. Инта геол. им. акад. А.Н. Заварицкого. Вып. 159. 2012. C. 125-128.
- 6. Чащухин И.С., Чередниченко Н.В., Адамович Н.Н. Поведение редких элементов в ультрамафитах Урала: І. Регрессивный досерпентиновый мета-морфизм // Ежегодник-2012. Тр. ИГГ УрО РАН. Вып. 160. 2013. С. 176–179. McDonough W.F, Sun S.-s. The composition of the
- 7. Earth // Chem. Geol. 1995. V. 120. P. 223-253.
- Trommsdorff V., Evans B.W. Alpine metamorphism 8 of peridotitic rocks Schweiz // Mineral. Petrogr. Mitt. 1974. Bd. 54. H 2/3. S. 333-352.