ПЕТРОЛОГИЯ, ГЕОХИМИЯ

ОТКЛОНЕНИЕ ОТ СТЕХИОМЕТРИИ СОСТАВОВ РУДООБРАЗУЮЩИХ ХРОМШПИНЕЛЕЙ ВЫСОКОХРОМИСТЫХ И ГЛИНОЗЕМИСТЫХ ХРОМИТИТОВ ВОЙКАРО-СЫНИНСКОГО МАССИВА

© 2013 г. П. Б. Ширяев

ЯГР-спектроскопия позволяет определять соотношение Fe²⁺ и Fe³⁺ в шпинелях. Благодаря этому метод широко применяется при оценке окислительновосстановительного состояния ультрамафитов. Исследователями [2, 3, 6] установлено расхождение в результатах расчета степени окисления железа в хромшпинелях, определенной по стехиометрии и при помощи ЯГР-спектроскопии, то есть нестехиометрия состава минерала. С.Л. Вотяковым и др. [1] для акцессорных шпинелей из ультрамафитов выявлена зависимость нестехиометрии (выраженной в виде отношения суммы двухвалентных катионов к сумме трехвалентных, Me^{2+}/Me^{3+}) от железистости; в рудообразующих и акцессорных шпинелях установлена обратная пропорциональность разницы в степени окисления железа, определенной при помощи ЯГР-спектроскопии и по стехиометрии состава от хромистости [1, 3]. В изученных нами шпинелях из хромититов такие зависимости не подтверждены (рис. 1, 2). В работе [3] отмечено закономерное отклонение состава хромшпинели от стехиометрии в зависимости от расстояния до кровли рудного тела в Главном рудном поле Кемпирсайского массива. Нами для высокохромистых хромовых руд Аркашорского и Пайтовского рудопроявлений Войкаро-Сынинского массива показана сходимость результатов ЯГР-спектроскопии и расчета содержаний Fe²⁺ и Fe³⁺ из стехиометрии состава хромшпинели [4]. Шпинели Аркашорского рудопроявления, по данным ЯГР-спектроскопии, имеют большую степень окисления железа (Fe³/(Fe³⁺ + Fe²⁺), далее #Fe³⁺), чем при расчете из стехиометрии состава, тогда как для хромшпинелей Пайтовского р.п. установлена близость значений #Fe³⁺, определенное обоими методами (расхождение составляет 2-4% #Fe³⁺) (рис. 3).

В настоящей работе проведено изучение характера изменения нестехиометрии рудообразующих хромовых шпинелей по разрезам тел хромититов высокохромистого (Аркашорское рудопроявление) и глиноземистого (Лагортинское рудопроявление) химического типов. Показатель нестехиометрии определялся как разница в значении отношения Fe^{3+}/Fe^{2+} , определенного при помощи ЯГР-спектроскопии и из стехиометрии состава (Fe^{3+}/Fe^{2+} (ЯГР)– Fe^{3+}/Fe^{2+} (стех.)).

Материал для исследований предоставлен В.Ю. Алимовым и Н.В. Вахрушевой. ЯГР-спектро-

Рис. 1. Зависимость величины отношения суммы двухвалентных катионов в хромшпинели к сумме трехвалентных (Me^{2+}/Me^{3+}) от ее железистости.

1 – хромовые шпинели руд Аркашорского р.п., 2 – Пайтовского р.п., 3 – р.т. 108 Лагортинского р.п., 4 – р.т. 116 Лагортинского р.п., пунктир – поле составов акцессорных шпинелей ультрамафитов [1]. Содержание Fe²⁺ определено при помощи ЯГР-спектроскопии.

Рис. 2. Зависимость разницы в степени окисления железа, определенной при помощи ЯГР-спектроскопии и из стехиометрии состава (#Fe³⁺(ЯГР)– #Fe³⁺(стех.) от хромистости хромшпинели.

Условные обозначения: см. рис 1. Пунктир – линия регрессии, по данным [1].

Рис. 3. Взаимосвязь степени окисления железа, определенной при помощи ЯГР-спектроскопии и из стехиометрии состава.

Условные обозначения см. рис 1. А – поле составов высокохромистых рудообразующих хромовых шпинелей Главного рудного поля Кемпирсайского массива, Б – дуниты Платиноносного пояса Урала [3].

Рис. 4. Вариации состава и нестехиометрии рудообразующей хромовой шпинели и фугитивности кислорода по разрезу через р.т. 3415 Аркашорского р.п.

1 – хромовые руды редко- средневкрапленные, 2 – породы дунит-гарцбургитового комплекса, 3 – дуниты. Пунктир – граница западной и восточной частей рудного тела. скопия выполнена для монофракций хромшпинели, составы которых определены при помощи химического анализа. Анализ произведен в химической лаборатории ИГГ УНЦ АН СССР в 1984 г., аналитик Т.П. Силантьева. Поля составов хромовых шпинелей, определенных химически и с помощью микрозонда, совпадают, что указывает на высокое качество результатов химических исследований, проведенных ранее. В данной работе использованы результаты химического анализа (табл. 1), поскольку он, в отличие от микрозондового, является интегральным методом исследования. В этом случае, сопоставление результатов с данными ЯГРспектроскопии, в целях изучения нестехиометрии состава шпинели, более корректно.

ЯГР–спектры были получены на спектрометре CM2201 в ИМин УрО РАН, аналитики Н.К. Никандрова, А.Б. Миронов.

Рудопроявление Аркашорское расположено в северной части Войкаро-Сынинского массива, в левом борту долины ручья Аркашор. Нами изучены хромититы наиболее крупного тела – 3415 (40 м в длину, при максимальной мощности выхода 12 м). Рудное тело залегает среди пород дунит-гарцбургитового комплекса, по которым развиты амфибол-оливин-антигоритовые породы. Оно сложено редко-средневкрапленными, среднезернистыми разностями хромититов со шлировыми обособлениями густовкрапленных. Силикатная часть хромититов состоит из оливина, серпентина и хлорита.

Лагортинское рудопроявление находится на водоразделе рек Лагорта-Ю и Труба-Ю, на восточном склоне Войкаро-Сынинского массива. Изученные тела хромититов 108 и 116 имеют различное геологическое окружение. Рудное тело 108 залегает среди слабо амфиболизированных гарцбургитов. Мощность дунитовой оторочки вокруг тела составляет 8-10 м. Руды представлены средневкрапленными разновидностями, среди которых встречаются обособления густовкрапленных. Силикатная часть хромититов сложена оливином и энстатитом. Тело 116 представляет собой серию маломощных жил хромититов и локализуется в краевой северо-западной части дунитового блока. В контакте с дунитами по породам дунит-гарцбургитового комплекса развиты оливин-антигоритовые породы. Преобладают средневкрапленные руды, с участками редко- и густовкрапленных, полосчатой текстуры. Силикатная часть состоит в основном из хлорита, реже встречаются оливин и серпентин.

По составу рудообразующей хромшпинели рудное тело (р.т.) 3415 Аркашорского рудопроявления делится на два блока: западный и восточный (рис. 4). Граница различных по составу частей рудного пересечения проходит в 5 м от западного контакта. Хромшпинели западной части р.т. 3415 более хромистые (Cr/(Cr + Al), далее #Cr = 64–73%), чем восточной (#Cr = 71–86%). Для них характерна

ЕЖЕГОДНИК-2012, Тр. ИГГ УрО РАН, вып. 160, 2013

Объ-	Номер	Состав хромшпинели, мас. %											#Fe ³⁺	#Fe ³⁺	#Fe ³⁺	Fe ³⁺ /	Fe ³⁺ /	He-
ект	пробы	SiO ₂	TiO ₂	Cr_2O_3	Al_2O_3	V_2O_3	Fe ₂ O ₃	FeO	FeO	MgO	MnO	Сумма	стех.	ЯГР	ХИМ.	Fe ²⁺	Fe ²⁺	стех.
		_	_						сум.	-						стех.	ЯГР	
р.п. Аркашорское, р.т. 3415	3415/1	1.56	0.39	49.4	16.17	Н.О.	3.64	14.17	17.45	14.25	0.22	99.44	0.25	0.222	0.19	0.50	0.71	0.21
	3415/2	1.97	0.26	47.48	17.93	н.о.	5.82	11.16	16.40	15.2	0.15	99.39	0.31	0.223	0.32	0.56	0.67	0.11
	3415/3	3.47	0.25	48.58	14.18	н.о.	6.26	11.48	17.11	14.34	0.15	98.08	0.33	0.255	0.33	0.65	0.63	-0.02
	3415/4	1.15	0.45	54.6	7.39	н.о.	7.22	19.81	26.31	8.15	0.27	98.32	0.24	0.282	0.25	0.36	0.37	0.01
	3415/5	1.36	0.25	52.08	13.78	н.о.	4.54	14.47	18.56	12.00	0.20	98.23	0.39	0.235	0.22	0.28	0.34	0.06
	3415/6	0.98	0.42	54.1	12.4	н.о.	2.91	16.6	19.22	12.3	0.25	99.67	0.23	0.246	0.14	0.35	0.42	0.07
	3415/7	1.07	0.31	58.27	6.37	н.о.	6.15	16.4	21.93	9.9	0.21	98.06	0.29	0.265	0.25	0.32	0.38	0.05
	3415/8	0.83	0.31	55.11	10.88	н.о.	4.03	16.77	20.40	10.6	0.2	98.33	0.35	0.333	0.18	0.25	0.30	0.06
	3415/9	1.28	0.28	46.43	18.27	Н.О.	6.62	15.39	21.35	11.3	0.19	99.10	0.34	0.315	0.28	0.29	0.42	0.14
р.п. Южнопогурейское, р.т. 108	108/1	1.31	0.34	39.40	27.21	0.24	4.74	13.50	17.77	12.07	0.19	98.53	0.51	0.246	0.24	0.06	0.28	0.22
	108/2	1.38	0.35	39.44	27.98	0.18	3.82	12.96	16.40	14.94	0.16	100.83	0.36	0.401	0.21	0.23	0.28	0.05
	108/3	2.34	0.31	39.07	26.92	0.18	2.57	15.15	17.46	13.86	0.18	100.32	0.39	0.386	0.13	0.22	0.25	0.03
	108/4	1.93	0.32	39.07	27.50	0.17	4.11	13.50	17.20	14.17	0.17	100.53	0.27	0.270	0.22	0.21	0.31	0.10
	108/5	2.43	0.35	38.78	27.90	0.18	3.44	13.87	16.97	14.07	0.17	100.85	0.22	0.254	0.18	0.19	0.25	0.06
	108/6	2.29	0.33	38.50	27.62	0.18	4.01	14.23	17.84	13.86	0.18	100.80	0.26	0.296	0.20	0.22	0.24	0.02
	108/7	1.06	0.37	40.97	24.48	0.18	3.96	16.17	19.73	12.84	0.22	99.85	0.24	0.274	0.18	0.25	0.27	0.01
	108/8	1.25	0.36	40.87	25.46	0.18	4.16	16.06	19.80	12.73	0.22	100.87	0.20	0.233	0.19	0.21	0.26	0.04
	108/9	1.25	0.39	41.82	25.11	0.20	4.14	16.24	19.97	12.84	0.21	101.79	0.22	0.297	0.19	0.22	0.27	0.05
р.п. Южнопогурейское, р.т. 116	116/1	1.83	0.40	39.62	25.64	0.10	3.59	14.23	17.46	14.52	0.19	99.76	0.05	0.218	0.19	0.33	0.28	-0.05
	116/2	1.55	0.44	42.89	17.86	0.10	6.01	20.44	25.85	10.32	0.31	99.32	0.19	0.219	0.21	0.42	0.28	-0.14
	116/3	1.93	0.39	38.68	25.56	0.17	5.24	14.97	19.68	14.52	0.21	101.14	0.18	0.199	0.24	0.45	0.29	-0.17
	116/4	1.12	0.35	38.53	23.78	0.10	7.31	14.23	20.81	13.74	0.21	98.64	0.18	0.238	0.32	0.49	0.34	-0.15
	116/5	1.29	0.32	45.88	19.55	0.21	7.63	16.06	22.93	11.57	0.28	102.03	0.16	0.200	0.30	0.31	0.39	0.08
	116/6	1.42	0.31	43.62	18.79	0.26	9.65	15.88	24.56	13.22	0.23	102.41	0.18	0.195	0.35	0.63	0.31	-0.32
	116/7	1.44	0.30	41.00	26.04	0.26	4.54	13.87	17.96	14.55	0.18	101.73	0.20	0.211	0.23	0.29	0.33	0.04
	116/8	1.11	0.33	40.60	24.50	0.17	5.53	15.15	20.13	14.05	0.20	101.09	0.18	0.205	0.25	0.40	0.36	-0.04
	116/9	0.79	0.33	43.82	18.04	0.18	10.36	15.68	25.00	12.01	0.28	100.45	0.18	0.211	0.37	0.53	0.50	-0.03
	116/10	0.95	0.33	43.82	18.78	0.24	10.01	16.24	25.25	12.01	0.29	101.67	0.33	0.414	0.36	0.51	0.46	-0.05

Таблица 1. Химический состав рудообразующих хромшпинелей

Примечание: #Fe³⁺ стех. – Fe³⁺/(Fe³⁺ + Fe²⁺) по стехиометрии состава шпинели, расчет из FeO сум.; #Fe³⁺ ЯГР Fe³⁺/(Fe³⁺ + Fe²⁺), по данным ЯГР-спектроскопии; #Fe³⁺ хим – Fe³⁺/(Fe³⁺ + Fe²⁺) по результатам хим. анализа.; Нестех. – Fe³⁺/Fe²⁺(ЯГР)–Fe³⁺/Fe²⁺(стех.)

железистость (Fe²⁺/(Fe²⁺ + Mg), далее #Fe²⁺) хромшпинели 26–41% и степень окисления железа 38.6– 41.5%. Железистость хромшпинелей восточного блока 38–56%, степень окисления железа 23.3– 30%. Содержание TiO₂ в шпинелях обеих частей тела хромититов изменчиво и колеблется в пределах 0.26–0.46 мас. %. Наибольший перепад содержания TiO₂ (0.26–0.46 мас. %) приходится на границу двух описанных частей рудного тела.

Шпинели р.т. 108 имеют хромистость 48–52% (рис. 5). По рудному пересечению этот показатель варьирует слабо, но скачкообразно увеличивается за метр до восточного контакта хромититов с околорудными дунитами. Хромититы р.т. 108 отличаются меньшей, чем р.т. 116 #Fe³⁺ шпинели – 19–24% с максимумом по разрезу в центральной части. Содержание TiO₂ в хромшпинели р.т. 108 в восточном направлении увеличивается от 0.32–0.35% до 0.4%.

Хромистость хромшпинели по р.т. 116 варьирует в пределах 50–62%, увеличиваясь к его контактам и к выходам интрарудного дунита (рис. 5). Степень окисления железа хромшпинели в р.т. 116 увеличивается к его восточному контакту с 22 до 32-33% с резким скачком в области интрарудного дунита. Содержание TiO₂ в хромшпинелях убывает с запада на восток с 0.45 до 0.33%. В области контактов хромитита и интрарудного дунита отмечается локальный (протяженностью 1 м) минимум по TiO₂ – 0.3 мас. %.

По данным ЯГР-спектроскопии, для хромшпинелей Аркашорского рудного поля получена большая степень окисления железа, чем из стехиометрии состава. По разрезу через р.т. 3415 Аркашорского рудопроявления степень стехиометрии шпинели убывает к контактам с вмещающими породами. В области границы двух блоков р.т. состав хромшпинелей наиболее соответствует стехиометрическому.

В теле хромититов 116 Лагортинского р.п. нестехиометрия хромшпинели убывает к контактам. В области контакта хромититов с интрарудным дунитом отмечается резкое изменение стехиометрии (разница #Fe³⁺ по результатам ЯГР-спектроскопии ШИРЯЕВ

Рис. 5. Вариации по разрезу через р.т. 108 (справа) и р.т. 116 (слева) Лагортинского р.п. состава и нестехиометрии рудообразующей хромовой шпинели.

Условные обозначения см. рис. 4.

и из стехиометрии состава меняет знак). В отличие от р.т. 3415, хромшпинели этого рудного тела, по данным ЯГР-спектроскопии, имеют меньшую степень окисления, чем при пересчете из стехиометрии состава. Нестехиометрия хромшпинелидов р.т. 108 увеличивается к контактам с вмещающими породами. Степень окисления железа в хромшпинели, по данным ЯГР-спектроскопии, больше, чем по стехиометрии состава. В центре тела хромититов отмечено локальное возрастание нестехиометрии, соответствующее максимуму степени окислении железа.

Данные ЯГР-спектроскопии были использованы для расчета температуры оливин-шпинелевого равновесия и фугитивности кислорода. Расчеты выполнены с использованием термометра и оксибарометра Больхауза-Берри-Грина [5]. Фугитивность кислорода, рассчитанная с использованием данных ЯГР-спектроскопии, оказалась для хромититов Аркашорского рудопроявления на 0.3–0.5 лог. ед. выше, чем при использовании содержаний Fe²⁺ и Fe³⁺, определенных по стехиометрии состава.

На Аркашорском рудном поле отмечается соответствие между нестехиометрией шпинели и значением фугитивности кислорода (d log fO₂ (FMQ)). В западной части разреза наиболее стехиометричным шпинелям соответствует минимум d log fO₂ (FMQ) (5 м от западного контакта р.т.). В восточной части разреза отмечается обратная пропорциональность нестехиометрии шпинели и фугитивности кислорода.

В работе изучены изменение нестехиометрии хромшпинели по разрезам через рудные тела хромититов высокохромистого и глиноземистого типов. По данным ЯГР-спектроскопии, хромшпинели р.т. 108 Лагортинского и 3415 Аркашорского рудопроявлений имеют большую степень окисления, чем из стехиометрии состава. Для этих тел хромититов отмечается увеличение нестехиометрии шпинели к контактам с вмещающими породами. Большая часть проб рудного тела 116 Лагортинского р.п. по данным ЯГР-спетроскопии менее окислена, чем из стехиометрии состава. Вблизи контакта руды и интрарудного дунита в р.т. 116 наблюдается резкое изменение нестехиометрии хромшпинели. Закономерное изменение величины нестехиометрии хромшпинели внутри рудных тел, установленное в нашей работе и работе [3], а также отсутствие в явной форме зависимости этой величины от состава шпинели позволяют рассматривать ее как самостоятельную переменную. Наряду с составом, нестехиометрия хромшпинели является индикатором условий ее образования. Вариации нестехиометрии хромшпинели на изученных объектах приурочены к градиентным (как по химическому составу, так и геологическому строению) зонам внутри тел хромититов: контактам с вмещающими и интрарудными породами, границам разнородных по составу или структуре пород блоков рудного тела. В телах хромититов в таких зонах обычно проявлены тектонические процессы: развиты зеркала скольжения, дробление и трещиноватость пород. Из этого следует, что нестехиометрия шпинели может быть связана с деформационными процессами, которые, в свою очередь, происходят в условиях градиента давлений.

Исследования выполняются при частичной поддержке проектов УрО РАН 12-5-021-НДР и 12-П-5-1017 (в рамках программы № 27 Президиума РАН).

СПИСОК ЛИТЕРАТУРЫ

 Вотяков С.Л., Чащухин И.С., Уймин С.Г., Быков В.Н. Оксибарометрия хромитоносных ультрамафитов (на примере Урала).
ЯГР-спектроскопия хромшпинелидов и проблемы оливин-хромшпинелевой геотермометрии // Геохимия.
№ 8. С. 791–802.

- Никитина Л.П., Гончаров А.Г., Салтыкова А.К., Бабушкина М.С. Окислительно-восстановительное состояние континентальной литосферной мантии Байкало-Монгольской области // Геохимия. 2010. № 1. С. 9–28.
- Чащухин И.С., Вотяков С.Л., Щапова Ю.Л. Кристаллохимия хромшпинели и окситермобарометрия ультрамафитов складчатых областей. Екатеринбург: ИГГ УрО РАН, 2007. 310 с.
- Ширяев П.Б. Мессбауэровская спектроскопия и окситермобарометрия хромовых шпинелей Аркашорского и Пайтовского рудопроявлений Войкаро-Сыньинского массива (Полярный Урал) // Мат-лы Уральской горнопромышленной декады. Екатеринбург: УГГУ, 2007. С 52–54.
 Ballhaus C., Berry R., Green D. High pressure exper-
- Ballhaus C., Berry R., Green D. High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implication for the oxidation state of the upper mantle // Contrib. Mineral. Petrol. 1991. V. 107, № 1. P 27–40.
- Wood B. J., Virgo D. Upper mantle oxidation state: ferric iron contents of lherzolite spinels by ⁵⁷Fe Mossbauer spectroscopy and resultant oxygen fugacities // Geochimica et Cosmochimica Acta. 1989. № 53. P. 1277–1291.