МИНЕРАЛОГИЯ

МИНЕРАЛОГО-ГЕОХИМИЧЕСКИЕ ОСОБЕННОСТИ ПЛАТИНОИДНОЙ МИНЕРАЛИЗАЦИИ ВЕРХ-НЕЙВИНСКОГО ДУНИТ-ГАРЦБУРГИТОВОГО МАССИВА (СРЕДНИЙ УРАЛ, РОССИЯ)

© 2013 г. И. Ю. Баданина, К. Н. Малич, В. В. Мурзин, В. В. Хиллер, С. П. Главатских

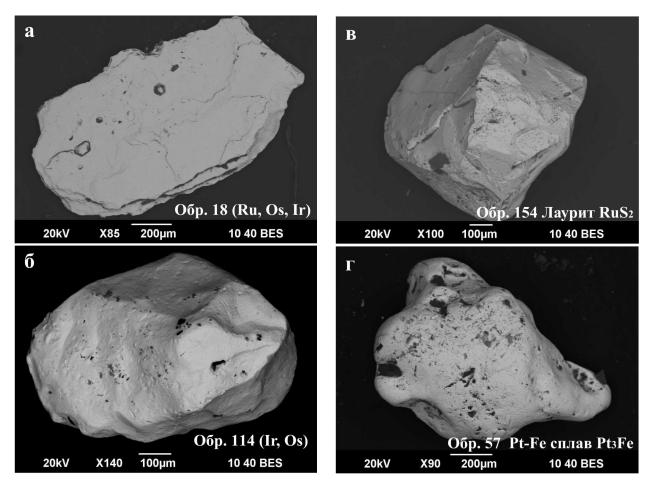
ВВЕДЕНИЕ

Ранее для Верх-Нейвинского массива на Среднем Урале (Россия) было установлено [3] широкое развитие трех разновозрастных ассоциаций минералов платиновой группы (МПГ), представленных первичными и вторичными (коррозионным и наложенным) минеральными парагенезисами. Первичные парагенезисы сложены самородными и сульфидными минералами систем Os-Ir-Ru и Pt-Fe. Первый из них развит повсеместно, второй - выявлен в россыпных отложениях р. Восточный Шишим, размывающей образования как дунитгарцбургитового, так и краевого полосчатого комплекса южной части массива. Предметом нашего сообщения являются оригинальные минералогогеохимические данные, характерные для МПГ в составе минеральных ассоциаций первичного парагенезиса. Исследование является составной частью более масштабной попытки выявить условия образования и источники вещества Os-содержащих МПГ субконтинентальной и океанической мантии [2, 7, 10, 12, 14, 16 и др.].

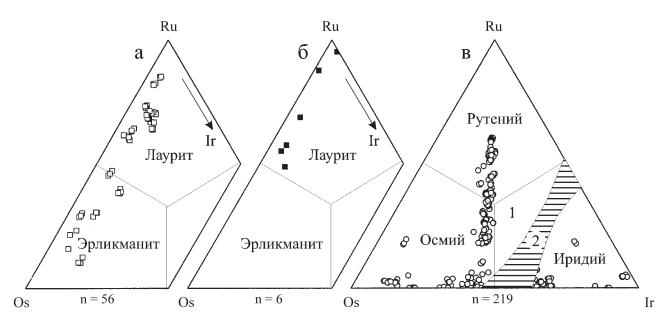
ОБЪЕКТ ИССЛЕДОВАНИЯ И ГЕОЛОГИЧЕСКАЯ ХАРАКТЕРИСТИКА

Верх-Нейвинский массив располагается на стыке Тагильского мегасинклинория и Восточно-Уральского поднятия в зоне Серовско-Маукского глубинного разлома. В его строении участвуют два комплекса: дунит-гарцбургитовый (O₃-S₁), слагающий внутренние части массива, и дунитклинопироксенит-габбровый (S2-D2), расположенный на периферии [3]. В пределах массива выявлено 68 проявлений и мелких месторождений хромитовых руд, локализованных в породах обоих комплексов (см. рис. 1 в [3]). Основные проявления благородных металлов - самородного золота и МПГ связаны с россыпными отложениями современных и древних речных долин. Представительная выборка, состоящая из 85 зерен МПГ размером от 0.1 до 3 мм, отобрана из четвертичных отложений р. Восточный Шишим (см. рис. 2 в [3]). Таким образом, изученные нами МПГ приурочены к южной части Верх-Нейвинского массива.

АНАЛИТИЧЕСКИЕ МЕТОДЫ


Для исследования морфологии и химического состава платиноидной минерализации использован комплекс методов, включающий сканирующую электронную микроскопию (JEOL-JSM6390LV) и микрорентгеноспектральный анализ (Cameca SX 100 с пятью волновыми спектрометрами, ИГГ УрО РАН, Екатеринбург). При проведении количественных анализов были использованы следующие рентгеновские спектральные линии и стандартные образцы: Os $M\alpha$, Ir $L\alpha$, Ru $L\alpha$, $Rh L\alpha$, $Pt L\alpha$, $Pd L\beta$, $Ni K\alpha$ (все чистые металлы), Fe $K\alpha$, Cu $K\alpha$, S $K\alpha$ (халькопирит), As $L\alpha$ – сплав InAs; проведен учет спектральных наложений линий (Ru $L\alpha$ на As $L\alpha$; Ru $L\beta$ на Rh $L\alpha$; Ir $L\alpha$ на Cu $K\alpha$ и др.). Ускоряющее напряжение составляло 15 кВ, сила тока пучка электронов – 20 нА, длительность измерения интенсивности на пике – 10 с, на фоне – по 5 с, диаметр точки анализа – 2 мкм. Всего выполнено около 350 анализов.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ


Платиноидная минерализация представлена преимущественно субидиоморфными и идиоморфными кристаллами, а также агрегатами кристаллов (рис. 1), среди которых Ru-Os-Ir сплавы (85.5%, табл. 1) преобладают над Ru-Os сульфидами и Pt-Fe сплавами (15.3 и 1.2%, соответственно; табл. 1). По морфологии превалирует шероховатая, иногда мелкоямчатая поверхность кристаллических индивидов и агрегатов (рис. 1). Для минералов осмия и рутения габитус хорошо сохраненных кристаллов определяется комбинациями простых форм: базопинакоида, гексагональной призмы и гексагональной пирамиды.

Выборка химических составов Ru-Os-Ir сплавов и Ru-Os сульфидов наряду с составом включений оливина приведены в табл. 2 и 3, рис. 2 и 3.

Отличительной особенностью изученных сплавов является широкий спектр минералов тугоплавких ЭПГ (IPGE: Os, Ir, Ru), представленных, согласно номенклатуре Д. Харриса и Л. Кабри [11], осмием, рутением и иридием (табл. 1 и 2, рис. 2в). Доминируют минералы осмия — (Os, Ir), (Os, Ir, Ru), (Os, Ru, Ir) и рутения — (Ru, Os, Ir), (Ru, Ir, Os). Дру-

Рис. 1. Морфологические особенности платиноидной минерализации Верх-Нейвинского массива. Изображения в обратно-рассеянных электронах с вещественным контрастом.

Рис. 2. Химические составы **Ru-Os сульфидов (а, б) и Ru-Os-Ir сплавов (в) первичного платиноидного параге**незиса Верх-Нейвинского массива в координатах Ru-Os-Ir, ат. %.

1 – рутениридосмин, 2 – область несмесимости. Другие объяснения в тексте.

ЕЖЕГОДНИК-2012, Тр. ИГГ УрО РАН, вып. 160, 2013

Таблица 1. Распространенность МПГ первичного парагенезиса

Минералы платиновой группы	n	%
Осмий (Os,Ir,Ru)	12	
Осмий (Os,Ir)	14	
Осмий (Os,Ru,Ir)	2	
Осмий (Os,Ru)	1	
Количество зерен осмия	29	34.1
Рутений (Ru,Os,Ir)	22	
Рутений (Ru,Ir,Os)	2	
Количество зерен рутения	24	28.2
Иридий (Ir,Os)	16	
Иридий (Ir)	1	
Иридий (Ir,Pt,Fe)	1	
Количество зерен иридия	18	21.2
Лаурит RuS ₂	8	
Эрликманит OsS ₂	5	
Количество зерен Ru-Os сульфидов	13	15.3
Pt-Fe сплав	1	1.2
Общее количество зерен	85	100.0

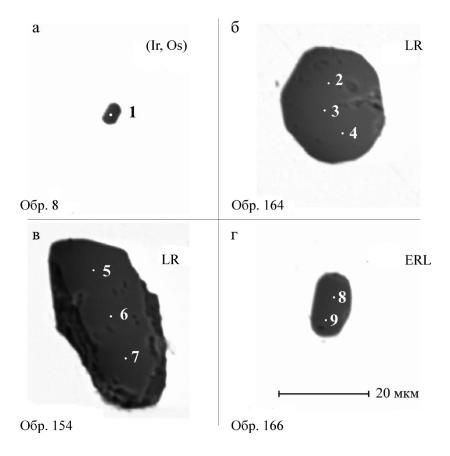
Примечание. n – количество зерен, % – процентное соотношение.

гие МПГ представлены минералами иридия, например (Ir, Os), (Ir), (Ir, Pt, Fe), а также Ru-Os сульфидами (лауритом и эрликманитом).

Изменчивость состава гексагональных минералов осмия и рутения обусловлена либо замещением в твердом растворе осмия иридием (тренд составов вдоль горизонтальной оси Os-Ir на рис. 2в), или рутением (вертикальный тренд составов в сторону Ru, рис. 2в). Ru-Os сульфиды представлены лауритом и эрликманитом, образующими непрерывный ряд твердых растворов (рис. 2а, Ru# варьрует от 11 до 89). Характерно, что состав включений Ru-Os сульфидов в Ru-Os-Ir сплавах имеет более рутениевый состав (рис. 26, Ru# = 53-99). Подавляющее большинство зерен МПГ первичного парагенезиса монофазны. Менее распространенные полиминеральные ассоциации платиноидов состоят из доминирующего МПГ и подчиненных ему в количественном отношении одного или нескольких МПГ. В виде моно- и полифазных включений установлены лаурит RuS₂, кашинит Ir₂S₃, купроиридсит CuIr₂S₄, куперит PtS, железо-платиновые твердые растворы переменного состава, ирарсит IrAsS, холлингвортит RhAsS, кейтконит Pd_{3-x}Te, рутенарсенит RuAs, пентландит, миллерит, хизлевудит и др.

Кроме доминирующих Ru-Os-Ir сплавов и Ru-Os сульфидов в составе зерен первичного парагенезиса обнаружена единичная находка Pt-Fe спла-

Таблица 2. Представительные химические составы Ru-Os сульфидов, Ru-Os-Ir и Pt-Fe сплавов


Анализ	1	2	3	4	5	6	7	80	9	10
Образец	122	32	71	8	9	9	154	164	166	57
Минерал	(Ru,Os,Ir)	(Ru,Os,Ir	(Os,Ir,Ru)	(Ir,Os)	(Os,Ir)	LR incl	LR	LR	ERL	Pt ₃ Fe
Mac. %										
Fe	0.43	0.38	0.52	0.62	0.00	0.00	0.22	0.00	0.00	8.48
Ni	0.26	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.14
Cu	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.46
Ru	21.45	33.78	13.23	0.72	2.77	26.98	36.57	47.31	21.41	0.00
Rh	0.00	0.00	0.00	0.86	0.00	0.00	0.00	0.00	0.00	0.88
Pd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.39
Os	39.86	31.07	48.60	33.82	79.22	36.92	20.33	10.75	41.31	0.43
Ir	34.67	28.74	37.33	58.43	18.05	4.54	8.98	4.92	5.86	3.61
Pt	2.11	4.12	0.87	6.23	0.00	0.00	0.00	0.00	0.31	85.26
S	0.00	0.00	0.00	0.00	0.00	31.34	33.36	35.76	30.25	0.00
As	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Сумма	98.78	98.09	100.55	100.68	100.04	99.78	99.46	98.74	99.14	99.65
AT.%										
Fe	1.23	1.01	1.57	2.05	0.00	0.00	0.25	0.00	0.00	24.03
Ni	0.71	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.38
Cu	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.16
Ru	33.95	49.51	22.02	1.32	5.10	18.26	23.20	28.10	15.08	0.00
Rh	0.00	0.00	0.00	1.54	0.00	0.00	0.00	0.00	0.00	1.37
Pd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.58
Os	33.53	24.20	42.99	32.91	77.44	13.28	6.85	3.39	15.46	0.36
Ir	28.85	22.15	32.67	56.27	17.46	1.62	2.99	1.54	2.17	2.97
Pt	1.73	3.13	0.75	5.91	0.00	0.00	0.00	0.00	0.11	69.16
S	0.00	0.00	0.00	0.00	0.00	66.84	66.71	66.97	67.18	0.00
As	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ru#						58	77	89	49	

Примечание. Сплавы рутения (Ru,Os,Ir), осмия (Os,Ru,Ir), (Os,Ir), иридия (Ir,Os). LR – лаурит, LR incl – включение лаурита, ERL – эрликманит, Pt_3Fe – Pt-Fe сплав. Ru# = 100*Ru /(Ru + Os).

Анализ	1	2	3	4	5	6	7	8	9
Образец	8	164	164	164	154	154	154	166	166
Рисунок	Рис. За	Рис. 3б	Рис. 3б	Рис. 3б	Рис. Зв	Рис. Зв	Рис. Зв	Рис. 3г	Рис. 3г
Минерал-хозяин	(Ir,Os)	LR	LR	LR	LR	LR	LR	ERL	ERL
Mac. %									
SiO ₂	40.33	40.68	40.55	40.39	39.72	40.96	40.74	40.73	41.21
MgO	50.42	50.69	50.61	50.61	51.92	51.83	51.66	52.23	52.37
FeO	6.70	7.72	7.73	7.78	6.10	6.64	6.33	6.19	5.95
NiO	0.40	0.33	0.34	0.35	0.42	0.41	0.42	0.14	0.17
MnO	0.13	0.06	0.14	0.11	0.08	0.09	0.10	0.25	0.32
Сумма	97.98	99.48	99.37	99.24	98.24	99.93	99.25	99.54	100.02
Fo (Fa)	93 (7)	92 (8)	92 (8)	92 (8)	94 (6)	93 (7)	94 (6)	94 (6)	94 (6)

Таблица 3. Представительные химические составы включений оливина в МПГ первичного парагенезиса

Примечание: (Ir,Os) – осмистый иридий, LR – лаурит, ERL – эрликманит, (Ru,Os,Ir) – сплав рутения; Al_2O_3 , CaO, TiO_2 , Cr_2O_3 не обнаружены, Fo (Fa) – номер форстеритового и фаялитового (в скобках) компонента, соответственно.

Рис. 3. Включения форстерита в (а) осмистом иридии (Os,Ir), (б) и (в) лаурите (LR) и (г) эрликманите (ERL). Изображения в обратно-рассеянных электронах с вещественным контрастом. Номера 1–9 обозначают места проведения электронно-микрорентгеноспектральных анализов, которые соответствуют таковым в табл. 3. Масштабная линейка соответствует 20 мкм.

ва, по составу близкого к Pt₃Fe (где Pt равна сумме ат. % элементов платиновой группы, Fe — сумме ат. % железа, никеля и меди; табл. 2, ан. 10). В Pt-Fe сплаве в виде включений установлены лаурит, осмистый иридий (Ir,Os), иридистый боуит и неназванный МПГ состава (Ni,Ir,Fe,Rh)S. Такое разнообразие минералов системы Os-Ir-Ru характерно для МПГ дунит-гарцбургитовых комплексов [1, 4,

8, 9, 13, 15 и др.], выделяемых в составе офиолитовой или альпинотипной ассоциации ультрамафитов.

Согласно исследованиям Д. Бэрда и В. Бассета [6], наличие рутениевого тренда химических составов твердых растворов тугоплавких ЭПГ на тройной диаграмме Ru—Os—Ir (рис. 2в) свидетельствует об образовании данных минералов в условиях высоких давлений мантийных глубин. Высокотемпе-

ратурное образование Ru-Os сульфидов было подтверждено экспериментально [5]. Впервые выявленные включения высокомагнезиального оливина (Fo_{92-94} , табл. 3, рис. 3), характерного минерала мантийных ультрамафитов, также свидетельствуют в пользу высокотемпературной природы образования изученных МПГ.

ЗАКЛЮЧЕНИЕ

Для минералого-геохимического исследования платиноидной минерализации Верх-Нейвинского дунит-гарцбургитового массива на Среднем Урале был использован комплекс методов, включающий сканирующую электронную микроскопию и микрорентгеноспектральный анализ. Подавляющее большинство МПГ первичного парагенезиса представлено сплавами системы Ru-Os-Ir (рутением, осмием и иридием) и Ru-Os сульфидами, образующими непрерывный ряд твердых растворов серии лаурит-эрликманит. Выявленные минералогогеохимические особенности Ru-Os-Ir сплавов и Ru-Os сульфидов определяют их как наиболее ранние высокотемпературные образования в ультрамафитах, типичные для МПГ из мантийных разрезов дунит-гарцбургитовой ассоциации.

Работа выполнена при поддержке РФФИ (грант № 12-05-01166-а) и программы фундаментальных исследований УрО РАН (проект 12- Π -5-1020).

СПИСОК ЛИТЕРАТУРЫ

- Дистлер В.В., Крячко В.В., Лапутина И.П. Эволюция парагенезисов платиновых металлов в альпинотипных гипербазитах // Геология рудных месторождений. 1986. Т. 28, № 5. С. 16–33.
- 2. *Малич К.Н., Баданина И.Ю., Костоянов А.И.* Начальный изотопный состав осмия Os-Ir-Ru сплавов ультраосновных массивов Полярной Сибири // Докл. АН. 2011. Т. 440, № 3. С. 397–402
- 3. *Мурзин В.В., Суставов С.Г., Мамин Н.А.* Золотая и платиноидная минерализация россыпей Верх-Нейвинского массива альпинотипных гипербазитов (Средний Урал). Екатеринбург: УГГГА, 1999. 93 с.
- 4. Рудашевский Н.С., Мочалов А.Г., Жданов В.В. Минеральные парагенезисы платиноидов ультрамафи-

- тов // Записки ВМО. 1983. Ч. 115. Вып. 1. С. 3-13.
- Andrews D.R.A., Brenan J.M. Phase-equilibrium constraints on the magmatic origin of laurite and Os-Ir alloy // Canadian Mineralogist. 2002. V. 40. P. 1705–1716.
- Bird J.M., Bassett W.A. Evidence of a deep mantle history in terrestrial osmium-iridium-ruthenium alloys //
 Journal of Geophysical Research. 1980. V. 85. P. 5461

 5470
- Brandon A.D., Walker R.J., Puchtel I.S. Platinum-osmium isotope evolution of the Earth's mantle: constraints from chondrites and Os-rich alloys // Geochimica et Cosmochimica Acta. 2006. V. 70. P. 2093–2103.
- 8. *Cabri L.J., Harris D.C., Weiser T.W.* Mineralogy and distribution of platinum-group minerals (PGM) placer deposits of the world // Exploration and Mining Geology 1996. V. 5. P. 73–167.
- 9. Gonzalez-Jimenez J.M., Gervilla F., Proenza J.A. et al. Distribution of platinum-group minerals in ophiolitic chromitites // Transactions of the Institutions of Mining and Metallurgy, Section B: Applied Earht Science. 2009. V. 118 (3-4). P. 101–110.
- Gonzalez-Jimenez J.M., Gervilla F., Griffin W.L. et al. Os-isotope variability within sulfides from podiform chromitites // Chemical Geology. 2012. V. 291. P. 224–235.
- 11. *Harris D.C.*, *Cabri L.J.* Nomenclature of platinum-group-element alloys: review and revision // Canadian Mineralogist. 1991. V. 29. P. 231–237.
- 12. *Hattori K., Hart S.R.* Osmium-isotope ratios of platinum-group minerals associated with ultramafic intrusions: Os-isotopic evolution of the oceanic mantle // Earth and Planetary Science Letters. 1991. V. 107. P. 499–514.
- 13. *Melcher F., Grum W., Simon G. et al.* Petrogenesis of the ophiolitic giant chromite deposits of Kempirsai, Kazakhstan: a study of solid and fluid inclusions in chromite // Journal of Petrology. 1997. V. 38. P. 1419–1458.
- 14. *Malitch K.N.* Osmium isotope constraints on contrasting sources and prolonged melting in the Proterozoic upper mantle: evidence from ophiolitic Ru-Os sulfides and Ru-Os-Ir alloys // Chemical Geology. 2004. V. 208. № 1-4. P. 157–173.
- 15. *Malitch K.N., Thalhammer O.A.R., Knauf V.V., Melcher F.* Diversity of platinum-group mineral assemblages in banded and podiform chromitite from the Kraubath ultramafic massif, Austria: evidence for an ophiolitic transition zone? // Mineralium Deposita. 2003. V. 38, № 3. P. 282–297.
- 16. Walker R.J., Prichard H.M., Ishiwatari A., Pimentel M. The osmium isotopic composition of convecting upper mantle deduced from ophiolite chromites // Geochimica et Cosmochimica Acta. 2002. V. 66. P. 329–345.