МЕСТОРОЖДЕНИЯ ПОЛЕЗНЫХ ИСКОПАЕМЫХ

ТИТАНОМАГНЕТИТ В ПОРОДАХ ИЗРАНДИТ-КЛИНОПИРОКСЕНИТОВОГО КОМПЛЕКСА МАССИВА ГОРЫ КАРАНДАШ (Ю. УРАЛ)

© 2013 г. А. И. Степанов, Ю. Л. Ронкин, С. П. Главатских

Массив ультраосновных израндит-клинопироксенитовых пород горы Карандаш располагается на западе северной части зоны Зюраткульского разлома. Породы этого массива представлены совершенно неизмененными породами, имеющими необычно высокий радиологический возраст [4]: израндитами (К-Аг метод, 4.2 ± 0.15 млрд; но поскольку это значение еще не имеет подтверждения, его следует принимать как возраст, "более древний, чем 3.5 млрд. лет"), оливин-плагиоклазовыми клинопироксенитами (3.51 ± 0.038 млрд. лет, U-Pb метод [5]; 3.3 ± 0.1 млрд. лет К-Аг метод [4]) и образованными по ним амфиболовыми породами. Израндиты и клинопироксениты зачастую объединяются в одну разновидность [1], хотя и геологические, и геохронологические данные определенно указывают на более раннее образование израндитов [4, 3]. Среди признаков различия этих пород наиболее характерным являются структурно-текстурные особенности и состав акцессорных рудных минералов ильменит-титаномагнетитовой группы. Для их изучения использовались сканирующий электронный (TSM-6390LV, GEOL, Япония) и оптический (Axioplan2) микроскопы.

В результате изучения акцессорного титаномагнетита в израндите В.Г. Фоминых [2] установил, что титаномагнетит представляет тонкозернистую структуру распада, равномерно рассеянную по всему зерну (рис. 1а) – условно "израндитовая" текстурная форма. В оливиновом клинопироксените рудные титаномагнетитовые обособления представляют собой более сложные структурно-текструктурные формы (рис. 1б). Структура распада титаномагнетита в клинопироксените представлена несколькими типами "ильменитовой решетки", которые закономерно накладываются одна на другую, и при этом более крупная всегда является более поздней, вплоть до образования сегрегированных скоплений ильменита в виде довольно крупных округлых зерен - "пироксенитовая" текстурная форма. С другой стороны, практически любое рудное выделение представляет собой "конгломерато-подобное" скопление зерен, каждое из которых имеет свою текстурную форму (рис. 2).

Более детальное изучение на электронном микроскопе рудных зерен в клинопироксените подтверждает отмеченные общие закономерности. На участке 1 образца 6 (рис. За) отмечены три разных зерна с резко различающейся структурой распада и с максимально резкими границами. Зерно с наиболее мелкозернистой структурой (слева) весьма по-

Рис. 1. Структура распада титаномагнетита. а – в израндите [2] (×70), б – в оливиновом клинопироксените (×120).

Рис. 2. Оливиновый клинопироксенит, "конгломерат" рудных зерен с различными структурными формами, ×120.

хожее на зерно с "израндитовой" текстурной формой (рис. 1а) в израндите (4.2 млрд. лет). Состав его – это состав титаномагнетита, т. е. наиболее вероятно, первичный начальный состав рудного вещества первичной породы ("протопороды") титаномагнетитовый (табл. 1). Следующее по крупности зерно: кристаллизация титаномагнетита (точка 8) со своеобразной решеткой довольно близко похожей на "израндитовую" (рис. 1а) и в основной массе, очевидно, остаточный магнетит (точка 7, табл. 1). Для еще более крупнозернистой структуры – также в основной магнетитовой массе (точка 3) решетка ильменита (точки 1, 2).

Участок 2 этого же образца представлен ильменитом как частью крупной ильменитовой решетки (вытянутое зерно, рис. 3б, точки 1–3, табл. 2) и в пределах ее располагается реликтовый участок титаномагнетита, в результате возможного распада которого кристаллизуется шпинель (точки 7–9) и мелкие ламели ильменита с меньшим содержа-

а – участок 1, "конгломерат" зерен разной структуры и состава; б – участок 2, реликт титаномагнетит-шпинелевого состава внутри позднего крупного зерна ильменита.

Спектр	0	Na	Mg	Al	Si	Ti	V	Cr	Mn	Fe	Итог
1/1	30.88		1.00	1.31		23.80		0.25	0.56	42.22	100.00
2/1	37.52		0.95	0.46		27.68			0.64	32.74	100.00
3/1	21.67		1.16	3.63	0.61	1.52	1.00			70.42	100.00
4/1	25.76	0.46	0.85	1.57	0.34	12.09	0.74	0.32		57.87	100.00
5/1	28.14		1.08	1.88		14.10	0.65	0.28	0.38	53.48	100.00
6/1	31.68	0.75	1.10	2.26	0.38	13.43	0.60			49.79	100.00
7/1	20.73	0.60	0.85	1.77	0.67	4.77	0.99	0.36		69.27	100.00
8/1	31.62	0.49	1.00	1.12	0.45	14.63	0.73		0.34	49.61	100.00

Таблица 1. Состав рудного вещества в рудном "конгломерато-подобном" выделении в клинопироксените (участок зерна 1)

Примечание. Минеральный эквивалент точки: 1, 2 – ильменит, 3 – магнетит, 4–6 – титаномагнетит, 7 – магнетит, 8 – титаномагнетит.

ЕЖЕГОДНИК-2012, Тр. ИГГ УрО РАН, вып. 160, 2013

	0	Μα	A1	Si	Ti	Cr	Mn	Fe	Zn	Итог
	0	Ivig	ЛІ	51	11	CI	IVIII	TU	LII	PIIOI
1/2	33.66	0.82	0.22		31.49		0.53	33.28		100.00
2/2	32.92	0.89	0.23		31.60		0.55	33.80		100.00
3/2	33.39	0.77	0.25		31.48		0.60	33.51		100.00
4/2	33.29	0.64	0.60		17.21		0.47	47.79		100.00
5/2	32.28	0.86	0.48		29.71		0.72	35.95		100.00
6/2	33.02	0.95	0.34		29.24		0.73	35.73		100.00
7/2	38.05	5.78	32.31		0.69	0.35		21.79	1.03	100.00
8/2	36.43	5.54	27.88		2.47	0.25		26.53	0.91	100.00
9/2	38.32	5.67	31.35	0.45	0.61	0.37		22.22	1.01	100.00

Таблица 2. Состав рудного вещества в пределах ильменитовой ламелли (участок зерна 2)

Примечание. точки: 1-3 – ильменит, 4 – титаномагнетит, 5-6 – ильменит, 7-9 – шпинель.

нием Ті и большим – Fe (точки 5, 6), чем в "фоновом" ильмените.

Таким образом, начальным рудным минералом в израндит-клинопироксенитовом комплексе (израндит 4.2 млрд. лет) являлся титаномагнетит, распад которого во времени привел к образованию ильменита и магнетита (оливиновый клинопироксенит 3.5–3.3 млрд. лет), при этом избыточный Al и Mg формируют шпинель. В процессе распада первичного титаномагнетита происходит очистка от примесных элементов – их содержание становится меньше и в некоторых случаях падает до нуля. Например, в позднем ильмените (точки 1. 2, табл. 1) отсутствует V, а в остаточном магнетите (точка 3) нет Cr.

Столь сложный путь преобразования рудных минералов, который может включать и меняющиеся и неодновременные в разных местах термодинамические условия, вполне согласуется с "радиологической" продолжительностью жизни всего комплекса в целом.

СПИСОК ЛИТЕРАТУРЫ

- 1. Кориневский В.Г., Котляров В.А. Минералогия плагиоклаз-оливинового клинопироксенита (израндита) Урала // Литосфера. 2009. № 4. С. 27–40.
- Краснобаев А.А., Гревцов Г.А., Фоминых В.Г. и др. О многоэтапности формирования титаномагнетитового оруденения в кусинских габброидах // Определение абсол. возр. рудных месторождений и молодых магматических пород. XVIII сессия Комиссии по опред. абсол. возр. геол. формаций. М.: Наука, 1976. С. 202–208.
- Краснобаев А.А., Пучков В.Н., Бушарина С.В. и др. Цирконология израндитов (Южный Урал) // Докл. АН. 2011. Т. 439. № 3. С. 394–398.
- Овчинников Л.Н., Дунаев В.А. О древнейшей горной породе Урала // Глубинное строение Урала: тр. Первой Уральской сессии Научного совета по компл. исслед. земной коры и верхней мантии. Москва: Наука, 1968. С. 200–209.
- Ronkin Y.L., Sindern S., Stepanov A.I. et al. The oldest magmatism of the Urals // Геохронолометрические изотопные системы, методы их изучения, хронология геологических процессов. 2012. С. 18–20.