ГЕОХРОНОЛОГИЯ

ПЕРВЫЕ ДАННЫЕ ОБ U-Pb ВОЗРАСТЕ ЦИРКОНА ИЗ ГРАНОДИОРИТОВ НОВОАЛЕКСЕЕВСКОГО МАССИВА (СРЕДНИЙ УРАЛ)

© 2013 г. Е. А. Зинькова, П. Монтеро*, Ф. Беа*

В Восточно-Уральской мегазоне гранитоиды различных формаций образуют протяженный субмеридиональный пояс. Преобладающими здесь являются батолитоподобные массивы тоналитгранодиоритовой формации, в апикальных частях которых развиты малые гранитные интрузии с дайковыми полями, золотоносными кварцевыми жилами и околорудными метасоматитами лиственитберезитовой формации. В экзоконтактах батолитов, кроме малых интрузий-сателлитов (Середовинский, Свердловский и др.), присутствуют также гипабиссальные массивы предшествующих им гранитоидов базальтоидной габбро-гранитной формации. К таким массивам на Среднем Урале относятся: Петрокаменский, Осиновский, Пановский, Балтымский, Шувакишский, Широкореченский, Новоалексеевский (рис. 1), с большей частью которых сопряжены различные по величине месторождения золото-сульфидно-кварцевой формации. Возраст большинства этих массивов не установлен.

Настоящая работа посвящена результатам определения возраста циркона из гранодиорита Новоалексеевского массива, расположенного в югозападной экзоконтактовой зоне крупного Верхисетского батолита на Среднем Урале (рис. 1) и вмещающего крупное месторождение золота – Крылатовское. Новоалексеевский массив - линейно вытянутое в меридиональном направлении (6 × 48 км) тело. На западе массив контактирует с породами дегтярской свиты предположительно среднедевонского возраста, а на востоке - с более молодыми гранитоидами Верхисетского массива, а так же с вулканитами кунгурковской свиты предположительно раннедевонского возраста (рис. 2). Следует отметить, что внутри кунгурковской свиты картируются многочисленные тела и дайки плагиогранодиоритов новоалексеевского комплекса [1]. Согласно данным геологического доизучения [3], массив имеет трехфазное строение. Породы первой фазы представлены, в основном, габброидами и чаще всего образуют небольшие ксенолиты и останцы среди пород последующих фаз – плагиогранодиоритов и плагиогранитов; последние преобладают.

Проба гранодиорита для выделения циркона была отобрана из отвалов шахты месторождения (см. Цирконы представлены идиоморфными короткопризматическими кристаллами светло-кремового цвета. Катодолюминесцентные изображения кристаллов циркона (рис. 3) показывают наличие тонкоритмичной зональности, параллельной кристаллографическим ограничениям зерен, что указывает на магматическую природу цирконов. Возраст по замерам 17 зерен циркона определяется интер-

рис. 1, рис. 2) из наиболее свежих и неизмененных пород. Гранодиориты – биотит-роговообманковые светло-серые среднезернистые, с гнейсовидной текстурой, породы. Плагиоклаз образует призматические кристаллы, соссюритизирован. Биотит и роговая обманка не затронуты вторичными процессами. Акцессорные минералы – магнетит, апатит, сфен, циркон. Яркая минералогическая черта пород – присутствие порфировидных выделений (5-7 мм) голубоватого кварца. Цирконы выделялись обычным методом, включающим дробление пробы массой 30 кг до фракции -0.5 мм, выделение тяжелой фракции на концентрационном столе и сепарации в тяжелых жидкостях. Конечный отбор цирконов осуществлялся вручную под бинокуляром. Датирование цирконов проведено на приборе SHRIMP IIe/mc в лаборатории IBERSIMS (Университет Гранады, Испания). Отобранные вручную цирконы плюс стандарты – несколько зерен циркона Тетога, одно зерно SL13 и несколько зерен циркона GAL – помещаются в шайбу диаметром 3.5 см, полируются и фотографируются в отраженном и проходящем свете, во вторичных электронах и методом катодолюминесценции. После интенсивной очистки шайба покрывается золотом толщиной 80 мкм. В каждой выбранной точке анализировалась следующая последовательность изотопов: ¹⁹⁶Zr₂O, ²⁰⁴Pb, ^{204.1} фон, ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb, ²³⁸U, ²⁴⁸ThO, ²⁵⁴UO. Первичный пучок, состоящий из ¹⁶O¹⁶O₂+, имеет значение интенсивности от 4 до 5 мкА, с диафрагмой Кохлера в 120 мкм, который создает пятно размером 17 × 20 мкм на цели, вторичный кратер составляет 80 мкм, достигая разрешения около 5000 на 1% высоты пика. Более подробную информацию о процедуре можно почерпнуть в литературе [4, 5]. Обработка данных осуществляется программой SHRIMPTOOLS, специально приспособленной Ф. Беа к IBERSIMS (доступна на сайте www.ugr.es/~fbea). Результаты исследований приведены в табл. 1.

^{*} Университет г. Гранада, Испания

Рис. 1. Схема расположения массивов в южной части Верхисетско-Туринской зоны, составлена по материалам Д.А. Двоеглазова, Г.Н. Кузовкова, Д.С. Вагшаля (1972–1979) и авторов.

 вулканогенные и вулканогенно-осадочные толщи силурийско(?)-раннедевонского возраста; 2 – породы базальтоидной габбро-гранитной формации; 3–5 – породы тоналит-гранодиоритовой формации (верхисетский комплекс): 3 – малокалиевой тоналит-трондьемитовой (таватуйской) и габбро-диоритовой серий; 4 – калинатровой тоналит-гранодиоритовой серии; 5 – адамеллит-гранитной серии; 6 – Крылатовское месторождение золото-сульфидно-кварцевой формации. Цифрами в кружках обозначены массивы: 1 – Петрокаменский, 2 – Середовинский, 3 – Осиновский, 4 – Пановский, 5 – Верхисетский, 6 – Балтымский, 7 – Шувакишский, 8 – Свердловский, 9 – Широкореченский, 10 – Новоалексеевский.

ЕЖЕГОДНИК-2012, Тр. ИГГ УрО РАН, вып. 160, 2013

Рис. 2. Геологическая схема Новоалексеевского массива, составлена по материалам И.Н. Бушлякова и И.Д. Соболева (1972); Д.А. Двоеглазова, Г.Н. Кузовкова, Д.С. Вагшаля (1972–1979) и авторов.

1 – габбро Ревдинского массива; 2 – габбро базальтоидной габбро-гранитной формации; 3 – базальты, андезибазальты порфировые и афировые, туфопесчаники и туфоалевропесчаники основного состава, туффиты, вулканомиктовые конгломераты, песчаники и алевролиты, фтаниты, мраморизованные известняки (кунгурковская свита D₁kn); 4 – туфопесчаники, туфоалевролиты кислого и основного составов, базальты, андезибазальты (дегтярская свита D₂?dg); 5 – диориты; 6 – кварцевые диориты; 7 – плагиогранодиориты Новоалексевского массива; 8 – плагиогранодиориты таватуйской серии Верхисетского массива; 9 – Серовско-Маукский глубинный разлом; 10 – место отбора пробы для U-Pb-датирования по циркону.

Точка анализа	U, г/т	Th, r/T	²⁰⁶ Pb _o .	²⁰⁶ Рb* г/т	(1) <u>207</u> Pb* 206Pb*	(±)	(1) $\frac{206}{238}$ <u>Pb*</u> 238 U	(±)	(1) $\frac{207}{235}$ <u>Pb*</u> 235 U	(±)	(1) Возраст, млн. лет ^{<u>206</u>Pb* ²³⁸U}	(±)	(1) Возраст, млн. лет ^{<u>207</u><u>Рb*</u> ²³⁵U}	(±)	D, %
1.1	686	180	0.2	36	0.05662	0.00013	0.06067	0.00054	0.47366	0.00469	379	3.3	378.6	3.2	3.6
2.1	379	66	-0.02	20	0.05472	0.00047	0.06079	0.0005	0.45858	0.0057	380.4	3	380.1	3.1	0.8
3.1	1023	275	0.44	55	0.05608	0.00031	0.0618	0.00037	0.47782	0.00425	384.9	2.2	385.6	2.3	2.6
4.1	349	51	0	19	0.05168	0.0006	0.06242	0.00114	0.44474	0.00972	390.3	6.9	391.6	7	-4.4
5.1	842	255	0.13	44	0.05458	0.00038	0.06089	0.00051	0.45826	0.00527	380.6	3.1	381	3	0.4
6.1	922	280	0.72	49	0.06125	0.00026	0.06121	0.00047	0.51696	0.00488	380.4	2.9	379.6	2.9	9.4
7.1	367	98	-0.14	19	0.05464	0.00032	0.06025	0.00045	0.45399	0.00462	377.2	2.8	377	2.6	0.8
8.1	1507	570	0.39	82	0.05605	0.00014	0.06278	0.0007	0.48522	0.00222	391.1	0.5	391.8	0.4	2.2
9.1	621	135	-0.14	34	0.05359	0.00042	0.0627	0.00043	0.46334	0.00507	392	2.6	392.5	2.6	-1.4
10.1	1919	1007	0.16	103	0.05424	0.00015	0.06227	0.00032	0.46573	0.0032	388.8	1.9	389.4	2.1	-0.4
11.1	489	87	0	26	0.054	0.0004	0.062	0.00077	0.46165	0.00691	387.8	4.7	387.9	4.8	-0.6
12.1	474	134	1.73	26	0.06785	0.0004	0.06231	0.00073	0.58292	0.00797	383.2	4.5	383.2	4.4	16.4
13.1	670	133	-0.03	36	0.05349	0.00033	0.06187	0.00019	0.45632	0.00359	387	1.2	387.5	1.1	-1.4
14.1	500	139	0.49	26	0.05774	0.00057	0.05988	0.00105	0.47672	0.00976	373.1	6.4	373.1	6.6	5.2
15.1	530	113	-0.16	28	0.05386	0.00042	0.06154	0.00037	0.457	0.00476	385	2.2	385.3	2.2	-0.8
16.1	587	113	-0.02	32	0.05431	0.00015	0.06213	0.00032	0.46524	0.00323	388.6	2	388.6	2	-0.2
17.1	306	62	0	16	0.05453	0.00029	0.06092	0.00064	0.45798	0.00566	381.2	3.9	381.1	3.9	0.4

Таблица 1. Результаты U-Pb изотопного анализа цирконов из гранодиорита Новоалексеевского массива (обр. Крл-16)

Примечание. Рb₀ и Рb* – обыкновенный и радиогенный свинец соответственно. (1) – введена поправка на обыкновенный свинец по измеренному ²⁰⁴Pb. D – дискордантность, %.

Рис. 3. Катодолюминесцентные изображения отдельных кристаллов циркона из гранодиорита обр. Крл-16 Новоалексеевского массива.

Овалы – точки измерения; номера соответствуют номерам анализов, приведенных в табл. 1.

валом 383 ± 2 млн. лет (СКВО = 0.10) – 384 ± 2 млн. лет (СКВО = 2.45) (рис. 4).

Таким образом, по результатам U-Pb датирования цирконов, внедрение и кристаллизация гранодиоритов Новоалексеевского массива происходили никак не позднее франского века. Полученные результаты не противоречат существующим геологическим данным о том, что гранитоиды Новоалексеевского массива интрудируют вулканиты кунгурковской свиты предположительно раннедевонского возраста.

Возраст гранодиоритов Новоалексеевского массива (384 ± 2 млн. лет) близок к возрасту долеритовых даек г. Азов (382 ± 4.4 млн. лет, 387 ± 4.1 млн. лет), по данным К.С. Иванова [2], фиксирующих реликтовые зоны задугового спрединга на Среднем Урале. Учитывая сказанное выше и тот факт, что гранодиориты Новоалексеевского массива вне-

Рис. 4. U-Pb возраст зерен циркона из гранодиорита Новоалексеевского массива (обр. Крл-16).

дрялись в толщи кунгурковской свиты, формирование пород которой, судя по их набору и характеру разрезов, происходило в мелководной обстановке; можно предположить островодужную природу гранитоидов Новоалексеевского массива.

Работа выполнена при поддержке программы Президиума РАН 12П-5-1024, гранта РФФИ 12-05-00109-а и при частичной поддержке испанского гранта CGL2008-02864. Публикация IBERSIMS № 5.

ЕЖЕГОДНИК-2012, Тр. ИГГ УрО РАН, вып. 160, 2013

СПИСОК ЛИТЕРАТУРЫ

- Зенков И.И., Южаков И.Г., Бегунов В.В. и др. Объемное геологическое картирование м-ба 1: 50 000 Дегтярской площади в пределах листов О-41–109-В (з.п.), О-41–121-А (в.п.), О-41–121-В (в.п.) по работам Дегтярской ГСП за 1979–1984 гг. Отчет. Свердловск, 1984.
- 2. Иванов К.С., Берзин С.В., Ерохин Ю.В. Первые данные об U-Pb возрасте цирконов из реликтовых зон спрединга на Среднем Урале // Докл. АН. 2012.

T. 443, № 1. C. 78–83.

- 3. Копанев В.Ф., Калугина Р.Д., Стороженко Е.В. Отчет Ольховской ГСП за 1991–1999 гг. Екатеринбург, 1999.
- Black L.P., Kamo S.L., Allen C.M. et al. TEMORA
 1: a new zircon standard for Phanerozoic U-Pb geochronology // Chemical Geology. 2003. P. 155–170.
- a new Zircon standard for Finalefozore 0-F0 geochronology // Chemical Geology. 2003. P. 155–170.
 Williams I. S. U-Th-Pb Geochronology by Ion Microprobe // Applications of microanalytical techniques to understanding mineralizing processes / Eds. M.A. McKibben, W.C. Shanks III, W.I. Ridley. Reviews in Economic Geology. 1998. V. 7. P. 1–35.