= РЕГИОНАЛЬНАЯ ГЕОЛОГИЯ

САУМСКАЯ ПАЛЕОВУЛКАНИЧЕСКАЯ СТРУКТУРА (СЕВЕРНЫЙ УРАЛ): ХАРАКТЕРИСТИКА ВУЛКАНОГЕННЫХ ТОЛЩ И ПРОБЛЕМА ИХ РАСЧЛЕНЕНИЯ

© 2014 г. Л. А. Санько, А. Е. Степанов*

Саумская палеовулканическая структура находится в западной части Тагильской мегазоны (Северный Урал) и представляет собой крупную изолированную овальную структуру размером 7×25 км, вытянутую в меридиональном направлении и расположенную между Чистопским и Помурским тоналит-диорит-габбровыми массивами. В ее строении участвуют стратифицированные образования нижнего и среднего палеозоя. Структура была откартирована А.Е. Степановым при проведении геологосъемочных работ. Данная статья основана на анализе собственных материалов.

Основанием вулканической постройки являются афировые базальты нижней части риолитбазальтовой формации верхнего ордовика – нижнего силура (шемурская свита), характеризующиеся трещинным типом излияний и отсутствием пирокластических образований. По соотношению микроэлементов базальты относятся к своеобразному переходному типу от океанических толеитов к островодужным (табл. 1, 1–7; рис. 1). По сравне-

Таблица 1. Содержание петрогенных окислов (%) и рассеянных элементов (г/т) в вулканитах риолит-базальтовой формации (шемурская свита)

Ком-	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
по-	144	492	521-2	522-1	529-1	7017/	ш1103	128	2028	7009/	7009/	7009/	7009/	7009/	7017/	7017/
нент						955				67	81	97	362	37	884	896
SiO ₂	46.6	46.66	49	49.88	49.92	51.89	50.09	64.89	63.27	71.03	65.91	70.27	71.77	71.18	77.27	65.18
TiO ₂	1.15	0.89	0.81	0.7	1.17	0.58	0.66	0.81	1.18	0.67	0.71	0.63	0.58	0.66	0.35	0.52
Al_2O_3	16.93	18.99	16.93	16.25	16.16	16.46	18.35	14.67	14.12	13.65	14.09	13.28	13.22	13.79	11.38	16.08
Fe_2O_3	5.69	7.21	4.7	4.01	2.94	2.83	3.86	3.74	3.23	1.25	1.92	1.54	0.98	1.08	1.27	1.26
FeO	5.49	5.54	7.5	5.74	7.35	7.29	6.81	2.66	3.72	2.38	3.61	2.33	2.18	1.82	1.28	2.98
MnO	0.36	0.18	0.63	0.32	0.18	0.16	0.23	0.16	0.11	0.04	0.08	0.05	0.03	0.04	0.12	0.13
MgO	5.88	8.04	6.79	6.39	8.83	8.13	6.35	2.17	2.2	1.45	2.59	1.64	1.19	1.49	0.52	2.1
CaO	14.37	3.36	9.4	9.5	5.2	2.6	5.64	2.51	5.58	1.88	3.49	2.43	2.25	2.09	1.05	1.96
Na ₂ O	1.93	4.94	3.56	3.52	3.56	4.2	4.72	6.12	3.76	5.53	4.3	5.29	5.5	5.52	5	3.54
K ₂ O	0.08	0.16	0.1	0.1	0.08	0.13	0.81	0.02	0.11	0.22	0.2	0.11	0.09	0.06	0.21	2.58
P_2O_5	0.1	0.1	0.07	0.04	0.1	0.1	0.05	0.18	0.36	0.11	0.1	0.13	0.11	0.112	0.06	0.13
П.п.п.	2.09	3.35	1.33	2.59	3.64	5.86	2.52	1.65	1.99	1.59	2.49	1.43	1.15	1.78	2.34	3.36
Сумма	100.67	99.42	100.82	99.04	99.13	100.23	100.09	99.58	99.63	99.8	99.49	99.13	99.05	99.62	100.85	99.82
V	250	170	150	220	150	160	230	-	-	-	-	-	-	-	-	-
Cr	320	36	180	360	20	40	430	-	-	-	-	-	-	-	-	-
Co	35	30	30	29	27	17	62	-	-	-	-	-	-	-	-	-
Ni	180	25	93	87	30	10	51	-	-	-	-	-	-	-	-	-
Rb	2	9	6	7	2	19	10	2	6	4	2	2	2	2	10	31
Sr	269	120	166	173	101	158	129	90	182	182	210	184	129	110	212	148
Y	26	20	46	33	30	25	29	74	72	27	30	14	19	40	17	18
Zr	85	41	87	43	79	17	42	252	147	110	95	140	80	190	60	80
Nb	-	-	-	-	-	-	-	-	-	-	8.8	-	-	13.3	-	-
Ta	-	-	-	-	-	-	-	-	-	1.2	0.8	0.8	0.8	0.8	0.8	0.8
La	-	-	-	-	-	-	-	-	-	6.9	2.8	6.1	3.7	1	1.4	6.1
Ce	_	-	-	-	-	-	—	-	-	27.4	32.6	27.6	27.2	22.6	28.9	32.9

Примечание. Здесь и далее в таблицах над чертой – номер по порядку, под чертой – номер пробы. 1–7 – базальты, 8–16 – риодациты и риолиты. Центральная лаборатория ПГО "Уралгеология", 1993–1994 гг.: петрогенные окислы – химический анализ, V–Zr – количественный спектральный анализ, Nb–Ce – нейтронно-активационный анализ.

^{*} ОАО "Уральская геологосъемочная экспедиция".

Рис. 1. Дискриминационные диаграммы вулканитов Саумской палеоструктуры (а – [1] с дополнениями авторов, б – по [3], в – по [6] с дополнениями авторов, г – по данным авторов [4], д – по [5]).

1 – риодациты шемурской свиты; 2 – риодациты, дациты, андезидациты павдинской свиты; 3 – базальты польинской свиты O_3 ; 4 – базальты шемурской свита O_3 – S_1 ; 5 – базальты нижней части павдинской свиты S_1 , ранее относимые к верхней толще шемурской свиты; 6 – базальты, андезибазальты павдинской свиты S_1 ; 7 – базальты, андезибазальты именновской свиты S_{1-2} .

Поля геодинамических обстановок для пород основного состава (диаграммы а, б, в): ВП – внутриплитные и океанических островов; СОХ – срединно-океанических хребтов; ЭОД – энсиматических островных дуг и надсубдукционных вулканических поясов; ОД – островных дуг; МБ – марианит-бонинитовой серии; К – коматиитов.

Поля геодинамических обстановок для пород среднего-кислого состава (диаграммы г, д): A1 – A2 – континентальных рифтов: A1 – начальной, A2 – зрелой стадий; О – океанических островов и хребтов; М1 – М2 – активных континентальных окраин: М1 – энсиматических островных дуг, М2 – энсиалических островных дуг и окраин андского типа; S – зон коллизии; ВП – внутриплитные, ОХ – океанических хребтов, ОД – островных дуг.

ЕЖЕГОДНИК-2013, Тр. ИГГ УрО РАН, вып. 161, 2014

Рис. 2. Гистограммы содержания циркония (а), рубидия (б), стронция (в) в вулканитах Саумской палеоструктуры.

нию с более молодыми образованиями они характеризуются пониженным содержанием стронция (рис. 2в). Вмещают гипабиссальные интрузии тоналит- и плагиогранит-порфиров, а также линейные субвулканические тела мелкопорфировых кварцплагиоклазовых риодацитов, дугообразно окаймляющих с запада центральную часть палеоструктуры. Базальты основания коррелируются с базальтами нижней толщи шемурской свиты верхнего ордовика – раннего силура, развитых южнее в пределах Шемурской палеоструктуры.

Верхняя часть разреза риолит-базальтовой формации представлена мелкопорфировыми плагиофировыми и кварц-плагиофировыми риодацитами, риолитами, локализованными в западной части Саумской палеоструктуры (рис. 3). В фациальном отношении эти образования интерпретировать достаточно сложно: преобладают плотные массивные разности, слагающие как покровы, так и субвуканические и дайковые тела. Вулканокластические разности развиты локально. Вулканиты кислого состава риолит-базальтовой формации по своему микроэлементному составу приближаются к образованиям энсиматических островных дуг (см. табл. 1, 8–16; рис. 1г, д), обеднены рубидием и обогащены цирконием (см. рис. 2а, б).

Центральная часть Саумской палеоструктуры представлена образованиями непрерывной базальт-андезит-риодацитовой формации (павдинская свита) раннего силура (верхи лландовери – низы венлока) с преобладанием разностей основного и кислого состава и сложена пологозалегающими сложночередующимися лавами, агломератовыми и лапиллиевыми туфами, реже гиалокластитами мелко- и среднепорфировых пироксен-плагиофировых и плагиофировых базальтов и продуктами кислого вулканизма: экструзивно-лавовыми, пирокластическими и игнимбритовидными разностями кварц-плагиоклазовых риодацитов, дацитов и роговообманково-кварц-плагиоклазовых андезидацитов, а также их вулканомиктовыми отложениями. Несмотря на пологое залегание, образования центральной (ядерной) части палеоструктуры достаточно сложно разблокированы по многочисленным разрывным нарушениям. В северной и югозападной частях устанавливаются два фрагмента жерловых структур центрального типа с развитием жерловых фаций плагиоклазовых и пироксенплагиоклазовых базальтов. Вулканизм выраженного центрального типа. По соотношению микроэлементов вулканиты непрерывной серии соответствуют продуктам раннеостроводужного этапа (табл. 2, 3; рис. 1а-г). Характерно повышение содержания Sr в основных вулканитах формации, повышение содержания Rb и снижение Zr в средних и кислых разностях (см. рис. 2).

В центральной части Саумской палеоструктуры устанавливается изометричная компенсированная депрессия диаметром 2.5 км, выполненная субгоризонтально залегающей толщей гидротермально измененных игнимбритоподобных кварцплагиоклазовых риодацитов средне- и крупнопорфировых, их пемзовых туфов и вулканомиктовых брекчий и гравелитов. Породы, выполняющие депрессию, вмещают стратиформные пологозалегающие тела сульфидных руд Саумского колчеданного проявления, расположенного в северозападной части структуры. Мощность толщи кислых пород, выполняющих депрессию, образованную на базальтовом основании, достигает, по данным бурения, 450 м.

Южная часть Саумской палеоструктуры осложнена крупным интрузивным телом кварцевых диоритов венлока-позднего силура, являющихся комагматами базальт-андезибазальтовой серии венлока-лудлова.

Карбонатно-терригенно-вулканогенные образования базальт-андезибазальтовой формации (именновская свита) нижнего-верхнего силура (венлоклудлов) согласно перекрывают вулканиты ядерной части палеоструктуры, периклинально их облекая, с углом падения 10–30° в северо-восточном, восточном и юго-восточном направлениях. Толща представлена типичными для Тагильской зоны лавами, туфами различной размерности, вулканомиктовыми гравелитами, песчаниками, алевролитами и телами рифогенных известняков исовского и банкового горизонтов, образующих своего рода "барьерный риф" в восточной части полосы развития базальт-андезибазальтовой серии. Как вулканиты, так и диориты характеризуются типичным островодужным спектром распределения редких элементов (табл. 4; рис. 1а–в) и высокими концентрациями стронция (рис. 2 в).

Образования базальт-андезибазальтовой формации перекрываются островодужными карбонатнотерригенно-вулканогенными отложениями трахибазальт-трахиандезитовой серии верхнего силура– нижнего девона (туринская свита).

Возвращаясь к строению центральной части Саумской палеоструктуры, следует заметить, что по представлениям, сложившимися в середине 80-х гг. прошлого столетия, центральная часть палеоструктуры представлена вулканогенными образованиями риодацит-базальтовой серии (шемурская свита) верхнего ордовика – раннего силура, которые периклинально облекаются с северо-востока, востока и юго-востока более молодыми осадочновулканогенными отложениями павдинской и именновской свит силура.

Принятое в то время двучленное деление шемурской свиты в пределах Саумской палеоструктуры основано исключительно на корреляции образований западной и центральной частей Саумской палеоструктуры с контрастной серией Шемурской палеовулканической структуры, расположенной значительно южнее, где установлено двучленное деление шемурской свиты на нижнешемурскую и верхнешемурскую толщи, подтвержденное находками конодонтов [2]. Немаловажную роль в "переносе" такой стратиграфической схемы на образования центральной части Саумской палеоструктуры сыграло наличие колчеданной минерализации, традиционно привязываемой к образованиям контрастной серии.

Данная корреляция выполнена некорректно. В пределах Саумской палеоструктуры вулканогенные образования, выделенные в составе нижнешемурской и верхнешемурской толщ шемурской свиты, по своим петрологическим особенностям плохо сопоставимы с образованиями Шемурской палеоструктуры, кроме этого, вулканиты контрастной серии Саумской палеоструктуры не охарактеризованы палеонтологически. Особенно плохо коррелируются образования, выделенные в верхнешемурскую толщу, с аналогичными отложениями Шемурского района. Среди базальтов Саумской палеоструктуры, ранее отнесенных к верхнешемурской толще, много порфировых разностей, в том числе пироксен-плагиофировых, вплоть до среднепорфировых, что совершенно не характерно для образований Шемурской структуры. Вызывают сомнения также другой тип вулканизма в пределах Саумской палеоструктуры и фациальные особенности базальтов, среди которых отмечаются не только эффузивы, но и туфы, в том числе агломератовые разности, что также не характерно для шемурской свиты.

Рис. 3. Схематическая геологическая карта Саумской палеовулканической структуры.

1 – трахиандезит-трахибазальтовая формация S2-D1 (туринская свита): конгломераты, гравелиты, песчаники, алевропесчаники, алевролиты, слоистые известняки, прослои лав трахиандезитов и трахибазальтов; 2-андезибазальт-базальтовая формация S₁₋₂ (именновская свита): базальты и андезибазальты пироксен-плагиоклазовые, их туфы, вулканомиктовые гравелиты, песчаники и алевропесчаники, прослои кремнистых алевролитов, рифогенные известняки; 3-4 - риодацит-андезит-базальтовая формация S₁ (павдинская свита): 3 – риодациты, дациты, кварц-плагиофировые среднепорфировые, их лавобрекчиевые, туфовые и вулканомиктовые разности, реже андезиты; 4 - базальты и андезибазальты плагиофировые, пироксен-плагиофировые мелко- и среднепорфировые, их туфы, вулканомиктовые разности; 5-6 - риодацит-базальтовая формация O₃-S₁ (шемурская свита): 5 – риодациты плагиофировые и кварцплагиофировые мелкопорфировые, их лавобрекчиевые и вулканомиктовые разности; 6 - базальты афировые, плагиофировые микропорфировые, прослои кремнистых алевролитов и яшмоидов; 7 - кварцевые диориты S₁₋₂; 8 – плагиограниты и плагиогранит-порфиры S₁; 9 - габбро Чистопского массива О1-2?; 10 - колчеданные проявления: Саумское (1), Медвежинское (2), Яхтельинское (3), Северо-Владимирское (4), Владимирское (5).

САНЬКО, СТЕПАНОВ

Ком-	1	2	3	4	5	6	7	8	9	10	11	12	13	14
по-	2616	02617-4	1462/	1511/	1572/	1583/	1628/	692/38	980/47	7017/	7017/	912/13	7017/	7018/
нент			18	35	29	26	31			555	855		186	270
SiO ₂	56.22	50.66	52.21	49.84	54	51.07	49.65	55.27	54.3	51.44	47.04	52.82	49.26	55.44
TiO ₂	0.76	0.76	0.96	0.74	0.9	0.56	0.72	0.83	0.64	0.72	0.43	0.82	0.68	0.94
Al_2O_3	15.21	16.7	15.88	16.98	18.29	18.4	19.74	15.63	18.45	16.91	16.18	17.87	18.75	17.12
Fe ₂ O ₃	4.82	6.38	7.63	6.49	3.33	4.21	4.66	2.59	3.85	3.73	4.24	3.58	4.66	8.01
FeO	6.1	4.11	4.23	4.5	5.51	6.32	6.72	6.27	4.43	7.82	4.45	6.72	6.31	4.14
MnO	0.17	0.16	0.13	0.16	0.16	0.18	0.16	0.16	0.16	0.23	0.14	0.22	0.12	0.2
MgO	4.23	5.53	4.2	5.44	4.35	6.72	5.63	3.06	3.18	7.5	6.14	5.4	4.38	2.84
CaO	3.58	3.58	2.92	6.19	5.59	3.14	2.04	7.71	8.72	1.4	11.81	2.15	8.25	4.67
Na ₂ O	5.9	6.11	6.15	4.96	3.64	2.92	4.92	4.88	2.52	4.64	3.36	5.66	2.23	4.12
K ₂ O	0.1	0.2	0.1	0.14	0.27	0.22	0.83	0.11	0.05	0.54	0.12	0.18	0.54	2.64
P_2O_5	0.13	0.13	0.12	0.15	0.15	0.07	0.06	0.19	0.14	0.09	0.05	0.09	0.1	0.29
П.п.п.	2.66	7.35	6.33	4.38	3.21	5.53	5.59	3.797	4.14	5.25	7.88	4.47	4.15	3.54
Сумма	99.88	101.67	100.86	99.97	99.4	99.34	100.72	100.49	100.58	100.27	101.84	99.98	99.43	103.95
V	280	250	410	520	460	540	360	250	180	160	300	240	210	55
Cr	20	20	20	47	20	20	20	20	20	13	90	20	190	13
Co	35	40	190	46	37	31	20	48	33	17	16	35	18	10
Ni	10	10	10	34	26	36	20	29	10	10	34	10	10	10
Rb	5	-	8	5	11	-	17	-	-	7	2	10	6	22
Sr	160	-	157	236	391	-	204	-	-	205	109	199	381	555
Y	9	11	31	31	31	43	20	20	25	14	6	30	8	21
Zr	32	41	27	31	87	27	35	94	46	10	11	32	18	12

Таблица 2. Содержание петрогенных окислов (%) и рассеянных элементов (г/т) в базальтах риодацит-андезитбазальтовой формации (павдинская свита)

Примечание. Центральная лаборатория ПГО "Уралгеология", 1993–1994 гг.: петрогенные окислы – химический анализ, V–Zr – количественный спектральный анализ, Nb–Ce – нейтронно-активационный анализ.

-			-	- ·		-				
Компо-	1	2	3	4	5	6	7	8	9	10
нент	7017/160	7019/20	7019/530	7019/778	7017/332	7017/53	7013/115	7013/377	7013/440	7017/467
SiO ₂	62.75	59.75	60.63	64.25	62.47	75.75	75.04	72.23	76.6	70.24
TiO ₂	0.57	0.52	0.46	0.46	0.45	0.28	0.36	0.37	0.28	0.34
Al2O3	15.31	15.63	15.43	14.14	14.12	11.62	11.87	14.1	11.34	13.21
Fe ₂ O ₃	2.54	6.72	6.22	5.46	2.03	0.75	2.37	3.63	1.95	0.95
FeO	3.56	3.41	3.06	2.43	4.28	1.86	1.15	2.28	1.2	2.91
MnO	0.08	0.11	0.09	0.12	0.11	0.07	0.055	0.055	0.046	0.09
MgO	2.19	2.6	4.57	2.7	3.96	1.23	2.7	1.98	1.47	1.83
CaO	5	4.64	3.39	3.39	2.38	1.23	0.73	0.68	0.8	1.3
Na ₂ O	4.45	4.43	3.35	4.26	3.06	3.85	3.17	5.13	4.59	3.77
K ₂ O	0.1	0.59	2.18	1.96	2.79	1.26	1.1	0.15	0.49	1.76
P_2O_5	0.2	0.07	0.08	0.08	0.08	0.05	0.07	0.07	0.04	0.08
П.п.п.	3.28	5.27	3.86	4.17	6.12	2.83	2.73	2.33	2.06	3.12
Сумма	100.03	103.74	103.32	103.42	101.85	100.78	101.345	103.005	100.866	99.6
V	100	90	_	100	_	—	_	_	_	—
Cr	14	21	_	34	_	—	_	_	_	—
Co	14	13	_	14	_	—	_	_	_	—
Ni	10	10	_	10	_	—	_	_	_	—
Rb	6	3	21	20	33	21	_	2	7	26
Sr	221	117	263	227	97	155	_	72	60	170
Y	85	25	15	20	23	17	_	15	21	20
Zr	30	14	75	65	65	90	_	70	52	70
Nb	-	_	_	_	_	7.2	_	_	_	_
Ta	-	_	0.8	_	0.8	0.8	_	0.8	0.8	0.8
La	-	_	9.5	_	5.6	4.5	_	5.4	2.6	11.5
Ce	-	_	22.4	_	34.6	23	_	22.8	25.9	33.5

Таблица 3. Содержание петрогенных окислов (%) и рассеянных элементов (г/т) в вулканитах среднего-кислого состава риодацит-андезит-базальтовой формации (павдинская свита)

Примечание. 1–5 – андезиты, андезидациты и дациты; 6–7 – риодациты, риолиты. Центральная лаборатория ПГО "Уралгеология", 1993–1994 гг.: петрогенные окислы – химический анализ, V–Zr – количественный спектральный анализ, Nb–Ce – нейтронно-активационный анализ.

Таблица 4. Содержание петрогенных окислов (%) и рассеянных элементов (г/т) в базальтах и андезибазальтах базальт-андезибазальтовой формации (имен-новская свита)

ЕЖЕГОДНИК-2013, Тр. ИГГ УрО РАН, вып. 161, 2014

Kow-	-	<i>c</i>	"	4	v	9	7	×	6	10	11	1	13	14	15	16	17	18
понент	1009	10102-9	10103-1	10107	1015	1323-1	2242	2247	2252	2253-1	2254	2258	2262-1	2331	2334	323	997/10	и-1768/33
SiO_2	54.07	60.17	62.02	53.54	52.26	56	55.9	54.83	48.42	52.94	47.72	51.83	49.56	55.82	59.21	53.18	49.92	55.21
TiO_2	1.13	0.9	0.86	0.89	0.85	1.05	0.88	0.74	0.88	0.85	0.86	0.71	0.79	1.17	0.72	0.7	0.89	0.83
Al_2O_3	15.8	15.55	15.79	18.15	20.43	15.7	16.95	18.64	19.6	16.97	17.32	17.09	18.38	16.19	18.78	17.33	16.85	16.44
Fe_2O_3	3.43	2.3	2.67	5.73	3.8	4.13	3.31	4.83	5.28	5.99	5.21	3.68	4.72	9.7	6.46	3.54	3.22	2.04
FeO	5.1	4.03	3.36	3.36	4.03	4.63	5.66	2.32	4.55	2.78	4.28	4.81	5.4	4.09	1.16	6.27	4.7	5.1
MnO	0.14	0.11	0.13	0.17	0.54	0.12	0.16	0.11	0.14	0.18	0.18	0.13	0.17	0.16	0.09	0.14	0.44	0.09
MgO	4.67	1.48	1.52	3.23	5.63	3.57	3.41	4.97	4.84	3.22	3.67	4.61	4.92	2.87	1.75	4.65	6.37	4.42
CaO	7.8	6.15	6.12	8	5.2	7.46	7.47	2.95	6.34	8.48	10.08	6.82	6.29	4.73	2.54	9.32	8.4	4.96
Na_2O	2.89	2.84	2.6	3.02	4.03	2.96	2.57	6.05	3.04	2.61	2.32	3.23	3.75	5.08	7.76	2.05	2.87	5.15
$\rm K_2O$	1.94	0.27	0.47	1.08	0.23	0.37	0.3	0.44	0.57	1.37	0.87	0.44	0.82	1.96	0.31	0.35	0.29	0.15
P_2O_5	0.27	0.3	0.31	0.21	0.15	0.25	0.18	0.16	0.16	0.22	0.27	0.1	0.14	0.32	0.2	0.11	0.2	0.26
П.п.п.	2.41	5.39	4.41	1.9	ς	3.6	2.44	3.24	7.06	4.51	9.75	7.79	4.35	2.1	3.14	2.43	4.13	5.65
Cymma	99.65	99.49	100.26	99.28	100.15	99.84	99.23	99.28	100.88	100.12	102.53	101.24	99.29	104.19	102.12	100.07	98.28	100.3
>	180	120	100	220	250	110	230	100	160	250	240	130	250	210	120	250	130	320
Cr	74	20	20	20	20	20	18	11	15	37	30	80	26	23	18	20	54	180
Co	22	30	10	42	24	17	17	14	17	16	22	12	7	14	11	20	27	30
Ni Ni	46	10	10	270	20	8	10	10	10	19	10	28	11	10	10	16	73	100
Rb	Ι	Ι	Ι	Ι	Ι	I	7	4	5	16	17	9	17	44	5	Ι	I	I
Sr	I	I	I	I	I	I	553	543	473	550	628	401	412	414	280	I	I	I
Υ	21	20	35	141	76	17	18	23	19	33	28	15	15	20	27	89	163	142
Zr	Ι	248	252	Ι	Ι	Ι	85	25	25	100	65	40	18	50	54		I	Ι
Примеч: Nb-Ce –	ание. Ц нейтрон	ентральна; но-активаі	я лаборато ционный а	рия ПГО нализ.	"Уралге	ология",	1993–19	94 гг.: п	етрогенн	рие окисл	IЫ — ХИМ	ический	анализ, 1	V-Zr – kc	личестве	энный сп	ектралы	ный анализ,

Рис. 4. Стратиграфическая схема Саумской палеовулканической структуры.

Не меньше сомнений вызывают и кислые образования, относимые в пределах Саумской палеоструктуры к верхнешемурской толще. Во-первых, поиски фаунистических остатков, в том числе конодонтов, не принесли результата. Во-вторых, отсутствует разрез, уверенно подтверждающий в пределах верхнешемурской толщи налегание кислых образований на базальты "верхней толщи". Во всех редких случаях, когда в керне скважин наблюдался подобный "контакт", оставался открытым вопрос, базальты ли это верхнешемурской толщи или измененные базальты нижнешемурской толщи или дайково-субвулканические образования основного состава. Немало вопросов и по вещественному составу кислых образований, относимых к верхней толще, среди которых также много порфировых разностей, в том числе до крупнопорфировых. По своим геохимическим особенностям кислые породы, относимые ранее к верхнешемурской толще, ближе к средним-кислым образованиям вышележащей павдинской свиты.

Представляется более обоснованным утверждение о том, что кислые вулканиты, ранее отнесенные к верхнешемурской толще, являются в своем большинстве более молодыми образованиями и относятся к вышележащей базальт-андезит-риодацитовой серии (павдинской свите) (рис. 4).

В этой связи следует упомянуть Саумское колчеданное проявление, локализованное в туфовых и вулканомиктовых разностях дацитового и риодацитового состава, ранее отнесенных к верхнешемурской толще и слагающих структуру центрального типа, в основании которой устанавливаются порфировидные плагиограниты и крупнопорфировые плагиогранит-порфиры, подстилающие пластообразные сульфидные тела. Структура Саумского месторождения совершенно не похожа на структуру классического уральского колчеданного типа, к которому относятся Шемурское и Новошемурское местородения Шемурского района. Уточненная стратиграфическая схема вулканогенных образований Саумской палеовулканической структуры представляется более обоснованной (см. рис. 4), чем ранее существующая. В минерагеническом аспекте это несколько меняет специализацию образований Саумской палеоструктуры с "классической" колчеданной медно-цинковой на золотоколчеданно-полиметаллическую, что находит частичное подтверждение в вещественном составе руд сульфидных проявлений района.

СПИСОК ЛИТЕРАТУРЫ

- Богданова Е.И. Простая дискриминантная диаграмма для выделения серий магматических пород // Ежегодник-1991. Екатеринбург: ИГГ УрО РАН, 1992. С. 41–42.
- 2. Бороздина Г.Н., Иванов К.С., Наседкина В.А., Сниги-

рёва М.П. О возрасте и объеме шемурской свиты Тагильской мегазоны Урала // Ежегодник-2003. Екатеринбург: ИГГ УрО РАН, 2004. С. 10–13.

- Пирс Дж. А., Липпард С. Дж., Робертс С. Особенности состава и тектоническое значение офиолитов над зоной субдукции // Геология окраинных бассейнов. М.: Мир, 1987. С. 134–165.
- Санько Л.А., Степанов А.Е. Дискриминационная диаграмма Rb–Sr–Zr для пород среднего и кислого состава (на примере Северного Урала) // Рифты литосферы. VIII чтения А.Н. Заварицкого. Екатеринбург: ИГГ УрО РАН, 2002. С. 196–197.
- Pearce J.A., Harris N.B.W., Tindle A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks // J. Petrol. 1984. V. 25. P. 956–983.
- Pearce J.A, Cann J.R. Tectonic setting of basic volcanic rocks determined using trace element analyses // Earth Planet. Sci. Lett. 1973. V. 19. P. 290–300.