
ПЕТРОЛОГИЯ, ГЕОХИМИЯ =

ИЗОТОПНЫЕ ОТНОШЕНИЯ РЬ В ГАББРО И ЖИЛЬНЫХ ТОНАЛИТАХ ИЗ ВОСТОЧНОЙ ЧАСТИ РЕВДИНСКОГО МАССИВА (СРЕДНИЙ УРАЛ): РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ НА МС-ICP-MS NEPTUNE PLUS

© 2014 г. С. В. Берзин, М. В. Стрелецкая

Изотопные соотношения свинца были исследованы нами в пробе габбро из скринов в пакете параллельных долеритовых даек и в пробе жильного тоналита из обнажений в восточной части Ревдинского массива.

Ревдинский массив является самым южным в цепочке массивов Платиноносного пояса Урала. Он состоит из отдельных тектонических блоков оливинового габбро, габбро-норитов, троктолитов и клинопироксенитов, в промежутках между которыми прослеживаются амфиболизированные и соссюритизированные полосчатые габбро и роговики. Комплекс параллельных даек, пересекающих габбро, обнажается на вершинах высоток в восточной части Ревдинского массива. Изначально при геологосъемочных работах на этих обнажениях И.И. Зенковым и соавторами были выделены древняя серия диабазовых даек, имеющих субширотное простирание, и перпендикулярная ей молодая серия диабазовых даек [3, 9]. В дальнейшем И.В. Семеновым и соавторами было показано, что эти диабазовые дайки являются комплексом параллельных даек, образовавшимся в условиях растяжения [7]. Более подробное описание обнажений комплекса параллельных долеритовых даек, прорывающих габбро Ревдинского массива, приводится И.В. Семеновым в ряде последующих публикаций [5-8 и др.].

В изучаемых нами обнажениях комплекса параллельных даек в восточной части Ревдинского массива (горы Балабан, Груберских, 489.3 м, 442 м, Ельчевишная и др.) наблюдается пересечение габбро двумя генерациями параллельных даек под углом 40-60°, в промежутке между которыми происходило внедрение пород жильной диорит-тоналитовой серии [1, 2, 4]. Долеритовые дайки 1-й генерации сложены и мелко- и среднезернистыми долеритами. Они имеют мощность до 3-6 м, крутое или субвертикальное падение и северо-восточное простирание (30-45°). В них наблюдаются структуры типа "дайка в дайке" с односторонними зонами закалки. Долеритовые дайки 2-й генерации, как правило, имеют небольшую мощность от 12-20 см до 1-1.5 м, северное или северо-западное простирание (азимут простирания 320-350°) и крутое падение. Они сложены тонкозернистыми и мелкопорфировыми долеритами с вкрапленниками плагиоклаза и амфибола. Дайки образуют рои и структуры типа "дайка в дайке". Долеритовые дайки первой генерации и габбро прорываются прожилками и дайками пород жильной диорит-тоналитовой серии, которые также играют роль цемента в магматических брекчиях, ранее описанных И.В. Семеновым как "габбро-гранитные брекчии" [6, 7 и др.].

Габбро и долериты параллельных даек подверглись регрессивному метаморфизму, пироксен в них повсеместно замещен амфиболом, преимущественно магнезиальной роговой обманкой, плагиоклаз полностью соссюритизирован. В единичных образцах с горы Груберских и горы 489.3 м в габбро и долеритах 1-й генерации встречены реликтовые зерна клинопироксена, отвечающие по составу диопсиду. В лейкократовых диоритах и тоналитах жильной серии плагиоклаз тоже повсеместно альбитизирован и соссюритизирован, среди фемических минералов встречаются амфибол и шамозит.

ИССЛЕДУЕМЫЕ ОБРАЗЦЫ

Образец габбро Д9-4 был отобран из скрина между параллельными долеритовыми дайками 1-й генерации в нижней части скального обнажения на северном отроге горы 442 м в черте г. Дегтярска (рис. 1а). Образец представлен среднезернистым габбро с офитовой структурой. Зерна клинопироксена в нем полностью замещены тонкозернистым агрегатом амфибола, плагиоклаз соссюритизирован и местами полностью замешен клинопоизитом. Как и прочие габброиды в исследуемых обнажениях, данный образец характеризуется пониженным содержанием К₂О - 0.28%, невысоким содержанием $Na_2O - 3.00\%$, отношение Fe/(Fe+Mg)_{мол} = 0.52 (табл. 1). Также стоит отметить повышенное содержание TiO₂ – 5.85%, которое характерно и для некоторых образцов габбро из аналогичных обнажений восточной части Ревдинского массива. Содержание микроэлементов в пробе, по данным ICP-MS, приведено в табл. 2. Образец характеризуется пологим, близким к N-MORB спектром распределения РЗЭ (La_n/Yb_n = 1.24) с положи-

Рис. 1. Обнажения комплекса параллельных даек двух генераций и жильных пород диорит-тоналитовой серии, прорывающих габбро в восточной части Ревдинского массива.

а – скальные обнажения на северном отроге горы 442 м в черте г. Дегтярск, б – обнажение в южной части горы 489.3 м в 2 км к юго-востоку от г. Дегтярск. Стрелками показано направление смещения односторонней зоны закалки в пакете параллельных даек 1-й генерации вдоль трещин, по которым внедрялись породы жильной диорит-тоналитовой серии, а затем долериты 2-й генерации. Оранжевыми точками отмечены места отбора образцов.

Рис. 2. Спайдер-диаграмма РЗЭ (а) и мультиэлементная диаграмма (б) для габбро (Д9-4) и тоналита жильной серии (Д6-4) из восточной части Ревдинского массива.

Состав СІ хондрита и примитивной мантии – по [19].

тельной европиевой аномалией ($Eu_n/Eu_n^* = 1.51$) (рис. 2a). На мультиэлементной диаграмме наблюдаются минимумы Th, Zr и максимумы Cs, Rb, P, Ti (см. рис. 2б).

Образец тоналита Д6-4 отобран из тонкого прожилка, пересекающего пакет параллельных долеритовых даек 1-й генерации, на южном отроге вершины горы 489.3 м (см. рис. 16). Образец представлен мелкозернистым массивным тоналитом, состоящим из зонального соссюритизированного плагиоклаза, ксеноморфного по отношению к нему кварца и содержащего 5–8% амфибола. Среди акцессорных минералов отмечены титанит и апатит. Между зернами кварца имеются взаимопроникающие стилолитовые границы. Образец тоналита, как и аналогичные образцы диоритов и тоналитов жильной серии, характеризуется низким содержанием $K_2O - 0.18\%$, $Na_2O+K_2O = 5.62\%$, $Fe/(Fe+Mg)_{MOR} = 0.62$ (см. табл. 1). В пробе наблюдается наклонный спектр распределения РЗЭ с незначительным обогащением в области легких лантаноидов (La_n/Yb_n = 1.51) (см. рис. 2а). На мультиэлементной диаграмме наблюдаются минимумы Rb, Zr и Ti (см. рис. 2б).

Компонент	Д9-4 (габбро)	Д6-4 (тоналит)		
SiO ₂	44.57	62.70		
TiO ₂	5.85	0.82 15.60 4.44 0.50 0.082 1.52		
Al ₂ O ₃	13.04			
Fe ₂ O ₃	5.54			
FeO	7.10			
MnO	0.201			
MgO	6.29			
CaO	11.19	7.44		
Na ₂ O	3.00	5.44		
K ₂ O	0.28	0.18		
P_2O_5	0.67	0.21		
П.п.п.	2.10	1.20		
Сумма	99.83	100.13		

Таблица 1. Химический состав проб габбро и тоналита из восточной части Ревдинского массива

Примечание. Анализы выполнены в лаборатории ФХМИ ИГГ УрО РАН, аналитики: Л.А. Татаринова, Т.М. Ятлук, В.П. Власов, Н.П. Горбунова, Г.С. Неупокоева.

МЕТОДИКА ИССЛЕДОВАНИЯ

Образцы подвергались кислотному вскрытию (HF+HNO₃), HCl при нагревании (200 °C) в посуде PFA Savillex. Хроматографическое выделение свинца проводилось на анионообменной смоле Bio Rad AG 1x8 по стандартной HBr–HCl-схеме [14].

Измерение изотопного состава свинца осуществлялось с помощью многоколлекторного массспектрометра с индуктивно связанной плазмой Neptune Plus, методом Tl_N MC ICP-MS, предусматривающим нормирование результатов всех текущих измерений изотопных отношений **Pb по эта**лонному значению отношения ²⁰⁵T1/²⁰³T1 (талийсодержащая метка добавлялась к образцу непосредственно перед измерением) и с учетом интерференций изотопа ртути 204. Параметры измерения на приборе приведены в табл. 3 и 4.

Коррекция интерференций применялась к изотопным отношениям свинца 204/206, 204/207, 204/208 по отношению $Hg^{202/204} = 4.35037$.

Нормирование проводилось по экспоненциальному закону с использованием отношения $TI^{205/203} = 0.418922$.

Правильность и воспроизводимость измерений изотопного состава свинца контролировались повторными измерениями стандарта NIST 981: $^{204}Pb/^{206}Pb = 0.059061 \pm 2$, $^{208}Pb/^{206}Pb = 2.16799 \pm 3$, $^{207}Pb/^{206}Pb = 914514 \pm 9$ (2 $\sigma_{e\pi}$ по 21 измерению).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Отношение радиогенных изотопов ²⁰⁶Pb, ²⁰⁷Pb и ²⁰⁸Pb к нерадиогенному ²⁰⁴Pb в исследуемых пробах приведено в табл. 5.

При вынесении данных на диаграмму ²⁰⁶Pb/²⁰⁴Pb – ²⁰⁷Pb/²⁰⁴Pb (рис. 3а) фигуративная точ-

ЕЖЕГОДНИК-2013, Тр. ИГГ УрО РАН, вып. 161, 2014

элемент	Д9-4 (Габоро)	Д6-4 (тоналит)			
Li	1.5776	0.8217			
Be	0.5006	0.3803			
Sc	33.880	16.732			
Ti	11846	3373.4			
V	300.54	29 402			
Ċr	0.6980	2 2165			
Mn	802.24	286 55			
Co	50 728	49 172			
C0	30.738	40.172			
INI C	12.238	9.3934			
Cu	/4.888	38.455			
Zn	39.887	19.197			
Ga	12.121	18.288			
Ge	1.1840	1.2546			
Rb	3.2355	0.3400			
Sr	263.07	228.53			
Y	11.071	43.505			
Zr	15.921	15.780			
Nb	3.8760	5.8852			
Мо	0.2378	0.1811			
Ag	0.4594	0.1377			
Cd	0.0791	0.0549			
Sn	1 2548	1 0773			
Sh	0.0629	0 1971			
Te	0.0029	0.1971			
Ca	0.0003	0.0000			
Cs D	0.0051	0.0491			
Ва	27.057	12.007			
La	2.2904	8.9105			
Ce	6.3299	28.2485			
Pr	0.9878	4.9758			
Nd	5.0322	27.772			
Sm	1.6264	8.6492			
Eu	0.9326	2.9340			
Gd	2.1665	9.0202			
Tb	0.3585	1.3921			
Dy	2.4715	9.2361			
Ho	0.5117	1.8341			
Er	1 4835	5 2143			
Tm	0 1967	0.6696			
Vh	1 2774	4 0899			
Iu	0.1823	0.5265			
Lu Uf	0.1023	0.5205			
111 To	0.0247	0.3134			
1d W	0.55/5	0.2403			
W	119.62	248.39			
	1.60/4	0.1624			
Pb	0.9610	0.8197			
Bi	0.0139	0.0000			
Th	0.1044	0.2801			
U	0.0597	0.0986			

Примечание. Анализы выполнены на квадрупольном массспектрометре ELAN 9000 в лаборатории ФХМИ ИГГ УрО РАН, аналитики: Н.Н. Адамович и Д.В. Киселева.

ка габбро (Д9-4) ложится правее геохроны, в поле составов базальтов тихоокеанских срединноокеанических хребтов (СОХ), по [17], вблизи гра-

Таблица 2. Содержание микроэлементов (г/т) по данным ICP-MS, в пробах габбро и тоналита из восточной части Ревдинского массива

Π(4 (

- -

Т

πο 4 (

Рис. 3. Диаграммы ²⁰⁶Pb/²⁰⁴Pb – ²⁰⁷Pb/²⁰⁴Pb (а) и ²⁰⁶Pb/²⁰⁴Pb – ²⁰⁸Pb/²⁰⁴Pb (б) для проб габбро (Д9-4) и тоналита (Д6-4) из восточной части Ревдинско-го массива.

DM, EM1, EM2, HIMU – по [22]; NHRL – Northern hemisphere reference line; MORB Тихого океана – по [17]; GLOSS – global subducted sediments (средний состав субдуцируемых осадков) – по [20]; островодужные вулканиты Камчатки – по [18]. Погрешность определения изотопных отношений меньше, чем размер значков.

Таблица 3. Операционные условия работы масс-спектрометра Neptune Plus

Система ввода образца					
Охлаждающий газ, л/мин	15.0				
Вспомогательный газ, л/мин	0.9				
Плазмообразующий газ, л/мин	1.0				
Мощность радиочастотного генератора, Вт	930				

Таблица 4. Расстановка коллекторов Фарадея [13]

L3-F	L2-F	L1-F	C-F	H1-F	H2-F	H3-F
²⁰² Hg	²⁰³ Tl	²⁰⁴ Pb	²⁰⁵ Tl	²⁰⁶ Pb	²⁰⁷ Pb	²⁰⁸ Pb

Рис. 4. Диаграмма Nb/Yb – Th/Yb [15] для габбро из скринов между параллельными долеритовыми дайками в восточной части Ревдинского массива.

ВАВВ – задугово-спрединговые базальты Марианского трога [16].

Рис. 5. Диаграмма SiO₂ – Sr для габбро из скринов в пакетах параллельных даек в восточной части Ревдинского массива.

Поля состава массивов Платиноносного пояса Урала: ДКГ (дунит-клинопироксенит-габбровой серии), Г (габбровой серии), ГДГ (габбро-диорит-гранитоидной серии) и МАГ (мелкозернистых амфиболовых габбро) – по данным [10]. Поля состава "ППУ Хорас." (породы Хорасюрского массива Платиноносного пояса Урала) и "офиолиты" (породы офиолитовой ассоциации Приполярного Урала) – по данным [12].

Таблица 5. Отношения изотопов Рb в пробах габбро и тоналита

Образец	206Pb/204Pb	Std.Err.	Std.Err.(%)	²⁰⁷ Pb/ ²⁰⁴ Pb	Std.Err.	Std.Err.(%)	²⁰⁸ Pb/ ²⁰⁴ Pb	Std. Err.	Std. Err.(%)
Д9-4 (габбро)	18.1024	0.0006	0.003	15.5338	0.0005	0.003	37.9022	0.0012	0.003
Д6-4 (тоналит)	18.6547	0.0007	0.004	15.6026	0.0006	0.004	38.2415	0.0014	0.004

ЕЖЕГОДНИК-2013, Тр. ИГГ УрО РАН, вып. 161, 2014

ницы с перекрывающим его полем составов вулканитов п-ва Камчатка [18]. Проба тоналита (Д6-4) по сравнению с габбро характеризуется повышенным значением отношений ²⁰⁷Pb/²⁰⁴Pb и ²⁰⁶Pb/²⁰⁴Pb. За счет этого на диаграмме (см. рис. 3а) проба занимает промежуточное положение между базальтами COX (и в частности фигуративной точкой Д9-4) и средним составом субдуцируемых морских осадков [21].

На диаграмме ²⁰⁶Pb/²⁰⁴Pb – ²⁰⁸Pb/²⁰⁴Pb (см. рис. 3б) проба габбро также попадает на границу поля составов базальтов тихоокеанских COX, по [17], и перекрывающего его поля вулканитов Камчатки [18]. Проба тоналита по сравнению с габбро обогащена ²⁰⁸Pb. Она также попадает в поле составов базальтов тихоокеанских COX, причем, как и на диаграмме ²⁰⁶Pb/²⁰⁴Pb – ²⁰⁷Pb/²⁰⁴Pb, занимает промежуточное положение между пробой габбро и субдуцируемыми осадками (GLOSS), что указывает на возможную островодужную природу тоналита.

Исследования изотопного состава свинца в пробе Д9-4 затрагивает проблему генезиса габбро, прорываемого параллельными долеритовыми дайками. С одной стороны, рассматриваемые габброиды расположены в пределах Ревдинского массива Платиноносного пояса Урала (ППУ), ограниченного тектоническими разломами, с другой, они отличаются по геохимическим признакам от классических габбро концентрически зональных массивов такого типа и, скорее, сопоставимы с офитовыми габбро офиолитовой ассоциации. На диаграмме Nb/Yb - Th/Yb (рис. 4) точки габбро тяготеют к составам океанических базальтов, промежуточных между N-MORB и E-MORB а также попадают в перекрывающее их поле базальтов зоны задугового спрединга Марианского трога, по [16]. На диаграмме $SiO_2 - Sr$ (рис. 5) точки составов габбро из скринов между долеритовыми дайками тяготеют к области составов офиолитов Приполярного Урала, по данным [12], отклоняясь от полей составов дунит-клинопироксенитгаббровой и габбровой серии ППУ, по данным [10], и пород Хорасюрского массива ППУ, по [12], за счет пониженного содержания Sr (185-263 г/т). На вероятную принадлежность исследуемых габброидов к офиолитовой ассоциации указывает и близость изотопных соотношений свинца к базальтам СОХ (см. рис. 3). Ранее Г.Б. Ферштатером указывалось на присутствие в пределах массивов Платиноносного пояса пород офиолитовой ассоциации в виде МАГ-серии (мелкозернистые амфиболовые габбро) [11, 12]. Как правило, породы этой серии представлены метаморфизованными, полосчатыми и часто жильными разностями. Возможно, габброиды и прорывающие их параллельные долеритовые дайки в восточной части Ревдинского массива являются наиболее хорошо сохранившимися фрагментами офиолитов, послуживших исходным субстратом для пород МАГ-серии.

ЕЖЕГОДНИК-2013, Тр. ИГГ УрО РАН, вып. 161, 2014

Таким образом, данные по исследованию изотопных соотношений свинца в пробе габбро и тоналита хорошо соотносятся с данными по их химическому и микроэлементному составу. Габбро из скринов между параллельными долеритовыми дайками соответствуют габброидам офиолитового разреза. Формирование тоналитов жильной серии, вероятнее всего, происходило в надсубдукционной обстановке.

Исследования проводятся при финансовой поддержке проекта 12-П-5-1017 "Структурно-вещественная эволюция и металлогения базит-ультрабазитовых комплексов при формировании земной коры складчатых систем (на примере Урало-Монгольского пояса)" Программы 27 Президиума РАН.

СПИСОК ЛИТЕРАТУРЫ

- Берзин С.В. Взаимодействия комплекса параллельных долеритовых даек и габбро в восточном обрамлении Ревдинского массива (Средний Урал) // Геодинамика, рудные месторождения и глубинное строение литосферы (XV чтения памяти академика А.Н. Заварицкого). Екатеринбург: ИГГ УрО РАН, 2012. С 18–21 с.
- Берзин С.В. Породы офиолитовых комплексов в обрамлении и в структуре Ревдинского массива Платиноносного пояса Урала // XI Международная школа наук о Земле имени Л.Л. Перчука. Одесса, 2013. С. 17–22.
- Зенков И.И., Шилов В.А. и др. Геологическая карта Урала масштаба 1:50 000 Листы О-40–120-Б (восточная половина), О-40–120-Г (восточная половина), О-40–132-Г (восточная половина), О-41–109-В, О-41–121-А. О-41–121-В, О-41–133-А (северо-западная четверть) (Отчет Ревдинского отряда по геологической съемке и доизучению, проведенных в 1968–1973 гг.). Свердловск, 1973.
- 4. Иванов К.С., Берзин С.В., Ерохин Ю.В., Смирнов В.Н. Офиолитовые комплексы Среднего Урала. Путеводитель геологической экскурсии Всероссийской научной конференции с международным участием "Геодинамика, рудные месторождения и глубинное строение литосферы" (XV чтения памяти академика А.Н. Заварицкого). Екатеринбург: ИГГ УрО РАН, 2012. 39 с.
- Коротеев В.А., Семенов И.В. Влияние конвекционноспрединговых и мантийно-плюмовых процессов в формировании химического состава базальтов и плутонических пород рифта палеоуральского океана // Литосфера. 2008. № 5. С. 54–83.
- Семенов И.В. Палеоокеанический спрединговый вулканизм Урала и реконструкция параметров Уральского палеозойского океана. Екатеринбург: УрО РАН, 2000. 362 с.
- Семенов И.В., Шилов В.А., Верховский А.М. О структурных и возрастных соотношениях рифтогенного комплекса параллельных базальтовых даек с габброгипербазитовыми массивами Платиноносного пояса Урала // Докл. АН СССР. 1978. Т. 243, № 1. С. 187–190.

- Семенов И.В., Шилов В.А., Ронкин Ю.Л. Структурные и относительно-возрастные соотношения комплекса параллельных долеритовых даек с породами Ревдинского габбрового массива (Средний Урал) // Ежегодник-1998. Екатеринбург: ИГГ УрО РАН, 1999. С. 132–139.
- Фоминых В.Г., Латыш И.К., Шилов В.А. Ревдинский массив и его титаномагнетитовые руды // Минералогия и геохимия железорудных месторождений Урала. Свердловск, 1974. С. 43–80.
- Ферштатер Г.Б. Палеозойский интрузивный магматизм Среднего и Южного Урала. Екатеринбург: РИО УрО РАН, 2013. 368 с.
- Ферштатер Г.Б., Краснобаев А.А., Беа Ф., Монтеро П., Бородина Н.С. Интрузивный магматизм ранних стадий развития Уральского эпиокеанического орогена: U-Pb геохронология (LA-ICPMS, NORDSIM, SHRIMP-II), геохимия, закономерности эволюции // Геохимия. 2009. № 2. С. 150–170.
- Шмелев В.Р. Магматические комплексы зоны Главного уральского глубинного разлома (Приполярный сектор) в свете новых геохимических данных // Литосфера. 2005. № 2. С. 41–59.
- Collerson K. D., Kamber B. S., Schoenberg R. Applications of accurate, high-precision Pb isotope ratio measurement by multi-collector ICP-MS // Chem. Geol. 2002. V. 188. P. 65–83.
- 14. *Kamber B. S., Gladu A. H.* Comparison of Pb purification by anion-exchange resin methods and assessment of long-term reproducibility of Th/U/Pb ratio measure-

ments by quadrupole ICP-MS // Geostan. Geoanal. Res. 2009. V. 33. P. 169–181.

- Pearce J.A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust // Lithos. 2008. V. 100. P. 14–48.
- Pearce J.A., Stern R.J., Bloomer S.H., Fryer P. Geochemical mapping of the Mariana Arc-Basin System: implications for the nature and distribution of subduction components // Geochemistry, Geophysics, Geosystems. 2005. V. 6. Iss. 7. Q07006.
- 17. *Plank T., Langmuir C.H.* The chemical composition of subducting sediment and its consequences for the crust and mantle // Chem. Geol. 1998. V. 145. P. 325–394.
- Sahaa A., Basua A.R., Jacobsenb S.B., Poredaa R.J., Yinb Q.-Z., Yogodzinski G.M. Slab devolatilization and Os and Pb mobility in the mantle wedge of the Kamchatka arc // Earth Planet. Sci. Lett. 2005. V. 236. P. 182–194.
- Sun S., McDonough W.F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes // Geological Society. L., 1989. V. 42. P. 313–345.
- White W.M., Hofmann A.W., Puchelt H. Isotope geochemistry of Pacific mid-ocean ridge basalt // J. Geophys. Res., B: Solid Earth Planets. 1987. V. 92. P. 4881–4893.
- Wilson B.M. Igneous petrogenesis a global tectonic approach. L., 1989. 466 p.
- 22. Zindler A., Hart S. Chemical geodynamics // Annu. Rev. Earth Planet. Sci. 1986. V. 14. P. 493–571.