
ПЕТРОЛОГИЯ, ГЕОХИМИЯ =

ВОЗРАСТ И НГ–Nd-ИЗОТОПИЯ УЛЬТРАМАФИТ-МАФИТОВЫХ ИНТРУЗИВОВ НОРИЛЬСКОЙ ПРОВИНЦИИ ПО ДАННЫМ ИЗУЧЕНИЯ МОНАЦИТА, БАДДЕЛЕИТА И ЦИРКОНА В РУДОНОСНЫХ И НЕРУДОНОСНЫХ ПОРОДАХ

© 2014 г. К. Н. Малич, И. Ю. Баданина, В. В. Хиллер, Е. А. Белоусова*, С. Н. Бочаров**, В. В. Кнауф***, С. М. Туганова***, А. А. Степашко ****

ВВЕДЕНИЕ

Уникальные месторождения платиноидов, никеля и меди, тесно связанные с ультрамафит-мафитовыми интрузивами норильского типа, расположены в пределах Игарско-Норильской палеорифтогенной системы на северо-западе Восточной Сибири [1]. Они приурочены к трем промышленно-рудоносным интрузивам (Талнахскому, Хараелахскому и Норильск-1) мощностью до 360 м и протяженностью до 20 км. Несмотря на значительный металлогенический потенциал, возрастные данные для подавляющего большинства ультрамафит-мафитовых интрузивов Норильской провинции, включая промышленно-рудоносные интрузивы, до недавнего времени [3, 4, 6, 15 и др.] были охарактеризованы недостаточно. Также слабо освещены вопросы, связанные с определением продолжительности процессов магматической кристаллизации и рудного концентрирования, необходимого для образования промышленного месторождения. Предметом нашего сообщения являются новые геохронологические и изотопногеохимические данные, основанные на изучении монацита, бадделеита и циркона из различной степени рудоносных ультрамафит-мафитовых интрузивов Норильской провинции.

ОБЪЕКТ ИССЛЕДОВАНИЯ И АНАЛИТИЧЕСКИЕ МЕТОДЫ

Среди ультрамафит-мафитовых интрузивов, расположенных в различных частях стратиграфического разреза Норильской провинции (рис. 1), было выделено [3, 6] три геолого-экономических типа:

 промышленно-рудоносный, вмещающий уникальные и крупные малосульфидные платиноидные и сульфидные платиноидно-медно-никелевые месторождения (интрузивы Хараелахский, Талнахский и Норильск-1); – рудоносный, с которым ассоциируют мелкие (резервные) месторождения с забалансовыми сульфидными платиноидно-медно-никелевыми рудами с признаками малосульфидного оруденения (интрузивы Зуб-Маркшейдерский, Южнопясинский, Вологочанский, Черногорский, Имангдинский и др.);

 – слаборудоносный с Си–Ni сульфидной минерализацией без платиноидов (Нижнеталнахский, Нижненорильский, Зеленогривский).

Изученные образцы пород и акцессорных минералов характеризуют в различной степени рудоносные ультрамафит-мафитовые интрузивы Норильской провинции (табл. 1). Схемы отбора образцов, минералого-петрологические и изотопногеохимические особенности пород промышленнорудоносных интрузивов Норильск-1. Талнах и Хараелах, рудоносных Зуб-Маркшейдерского, Южнопясинского, Вологочанского, Черногорского интрузивов и слаборудоносного Нижнеталнахского интрузива приведены нами ранее [3, 4, 15 и др.]. Акцессорные минералы извлечены из различной степени рудоносных пород ультрамафит-мафитовых интрузивов при помощи ррт-технологии, имеющей метрологическое обеспечение и обладающей высокой минералогической чувствительностью [2]. При выявлении типоморфных особенностей акцессорных, рудных и породообразующих минералов были использованы методы электронной микроскопии, микрорентгеноспектрального анализа и массспектрометрии с системой лазерного пробоотбора. Для определения возраста различной степени рудоносных интрузивов и выявления длительности их образования при изучении циркона и бадделеита использовался локальный U-Pb изотопный метод анализа (масс-спектрометр Agilent 7500cs ICP-MS с системой лазерного пробоотбора Photon Mashines Excimer 193 nm; Университет Маквори, г. Сидней, Австралия), при изучении монацита – метод химического электронно-зондового датирования (микроанализатор CAMECA SX 100; ИГГ УрО РАН, г. Екате-

^{*} Университет Маквори, г. Сидней, Австралия.

^{**} Санкт-Петербургский государственный университет, г. Санкт-Петербург.

^{***} ЗАО "НАТИ", г. Санкт-Петербург.

^{****} Институт тектоники и геофизики ДВО РАН, г. Хабаровск.

Рис. 1. Стратиграфический разрез, показывающий расположение промышленно-рудоносных (Хараелахского, Талнахского и Норильск-1), рудоносных (Черногорского, Зуб-Маркшейдерского и Вологочанского) интрузивов и слаборудоносного Нижнеталнахского интрузива (по данным [9, 10]).

Таблица 1. Типы изучаемых промышленно-рудоносных, рудоносных (с резервными месторождениями) и слаборудоносных интрузивов Норильской провинции

Интрузив	Скважина	Тип интрузива
Норильск-1	MH-2	Промышленно-рудоносный
Талнахский	ОУГ-2	
Хараелахский	КЗ-844, КЗ-963	
Черногорский	МП-2бис	Рудоносный (с забалансовыми платиноидно-медно-никелевы-
Зуб-Маркшейдерский	МП-27	ми рудами)
Вологочанский	OB-29	
Южнопясинский	OB-25	
Нижнеталнахский	ТГ-31	Слаборудоносный

ринбург). Обработка полученных данных осуществлялась с использованием программы GLITTER [11]. Возраст монацита рассчитывался по содержанию Th, U, Pb в каждой анализируемой точке зерен минерала [16]. Для идентификации источников силикатного вещества различной степени рудоносных интрузивов методом лазерной абляции и массспектрометрии с ионизацией пробы в индуктивносвязанной плазме (масс-спектрометр Nu-Plasma с системой лазерного пробоотбора UP213 New Wave/

Merchantek) определены вариации начального изотопного состава гафния в цирконе и бадделеите. Измеренные ¹⁷⁶Lu/¹⁷⁷Hf-отношения и константа рас-пада ¹⁷⁶Lu = $1.865 \cdot 10^{-11}$ г⁻¹ [19] были использованы для вычисления величины начального изотопного ¹⁷⁶Hf/¹⁷⁷Hf-отношения. Параметр эпсилон гафния (ɛHf), выражающий отклонение начального отношения ¹⁷⁶Нf/¹⁷⁷Нf между цирконом и хондритовым универсальным резервуаром (CHUR), умноженное на 10⁴, был рассчитан с использованием 176 Lu = 1.865 10⁻¹¹ г⁻¹ и параметров CHUR, предложенных в работе [8], где ${}^{176}Lu/{}^{177}Hf = 0.0336 \pm 0.0001$ 176 Hf/ 177 Hf = 0.282785 ± 0.000011. Методом и ID-TIMS (мультиколлекторный масс-спектрометр Finnigan MAT "Triton", ФГУП "ВСЕГЕИ") охарактеризован начальный изотопный состав неодима в породах. Детальная характеристика аналитических методов приведена в работах [12-18 и др.].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Методом химического электронно-зондового датирования монацита Талнахского интрузива получено средневзвешенное значение возраста 259 ± 23 млн лет (среднеквадратичное отклонение – 0.08, n = 28; см. рис. 2, 3). Возраст кристаллизации монацита соответствует доминирующему возрастному кластеру цирконов Талнахского интрузива (259.6 ± 0.7 млн лет [4, рис. 7а, с. 45]). Восемь зерен бадделеита из безоливинового габбро (обр. N1-4, рис. 4) интрузива Норильск-1 определяют 206 Pb/ 238 U-кластер, характеризующийся возрастом 290 ± 2 млн лет (см. рис. 4). Данный воз-

Рис. 2. Внутреннее строение монацита из рудоносного меланотроктолита (обр. Т-16) Талнахского интрузива.

Номера точек датирования соответствуют таковым в табл. 2. Изображение в обратнорассеянных электронах с вещественным контрастом.

раст близок к таковому бадделеитов (рис. 5 и 6) и наиболее древних цирконов [3, 6, 15] из других ультрамафит-мафитовых интрузивов Норильской провинции. Таким образом, бадделеиты, цирконы и монациты разновозрастных кластеров – от 350 до 220 млн лет – свидетельствуют, возможно, о длительной пульсационной кристаллизации исходного расплава в разных промежуточных магматических камерах и (или) смешении разных магматических субстратов в процессе образования и становления интрузивов. Временной интервал более чем

Рис. 3. Вариации возраста монацита Талнахского интрузива, рассчитанные по единичным точкам средневзвешенного значения возраста (а) по методике [16], и (б) гистограмма распределения значений возраста – плотности вероятности для единичного определения возраста.

Погрешности рассчитанных значений возраста приведены на уровне 16.

МАЛИЧ и др.

Компонент	Номер анализа											
	3	10	11	13	14	18	25	27	29	31	32	
P ₂ O ₅	28.74	28.91	28.63	28.95	29.01	29.00	27.67	28.20	28.39	28.12	28.34	
Ce_2O_3	33.63	33.61	32.77	34.11	34.47	34.58	32.03	31.97	31.81	31.62	31.83	
La_2O_3	20.20	21.07	19.47	22.73	21.45	20.81	19.51	19.87	19.49	19.47	19.77	
Nd ₂ O ₃	8.37	8.41	9.03	8.07	8.66	8.46	8.31	8.12	8.26	8.40	8.36	
Pr ₂ O ₃	2.74	2.69	2.66	2.56	2.64	2.87	2.50	2.38	2.52	2.55	2.65	
Sm ₂ O ₃	0.65	0.68	0.85	0.45	0.60	0.67	0.66	0.57	0.65	0.56	0.67	
Gd ₂ O ₃	0.52	0.42	0.58	0.36	0.45	0.49	0.41	0.39	0.45	0.41	0.43	
Dy ₂ O ₃	0.06	0.05	0.08	0.03	0.08	0.08	0.06	0.06	0.08	0.04	0.10	
SiO ₂	0.71	0.66	0.74	0.47	0.46	0.52	1.26	1.33	1.22	1.25	1.16	
Y_2O_3	0.40	0.37	0.48	0.15	0.36	0.41	0.33	0.25	0.32	0.33	0.35	
CaO	0.18	0.17	0.22	0.11	0.14	0.16	0.20	0.20	0.20	0.22	0.20	
ThO ₂	3.14	2.13	3.16	1.45	1.24	1.50	5.92	6.26	5.85	6.01	5.56	
UO ₂	0.07	0.05	0.07	0.01	0.04	0.05	0.09	0.08	0.08	0.08	0.08	
PbO	0.04	0.03	0.04	0.02	0.01	0.02	0.07	0.07	0.07	0.07	0.06	
Сумма	99.45	99.24	98.77	99.48	99.61	99.64	99.02	99.73	99.39	99.13	99.56	
Т, млн лет	256	280	276	262	258	261	259	260	260	262	245	

Таблица 2. Представительный химический состав (мас. %) монацита Талнахского интрузива и значения возраста, расчитанные по методике [16]

100 млн лет может указывать на длительную эволюцию Норильской рудно-магматической системы [5]. По продолжительности образования норильские интрузивы сопоставимы с платиноносными интрузивами Кольской провинции, для которых на примере Федорово-Панского и Мончегорского интрузивных комплексов, интрузива горы Генеральской и Имандровского лополита обосновывается магматическая эволюция длительностью 130 млн лет (в интервале 2.52–2.39 млрд лет назад [7]).

Преобладающие значения начального изотопного состава гафния бадделеитов рудоносных Зуб-Маркшейдерского, Южнопясинского и Черногорского интрузивов отвечают параметрам, характерным для "ювенильного" мантийного источника (см. рис. 5), что сближает их с Нf-изотопными параметрами цирконов промышленно-рудоносных и

Рис. 4. U–Pb-возраст бадделеита из безоливинового габбро интрузива Норильск-1.

рудоносных интрузивов Норильской провинции. Характерно, что Hf-изотопная характеристика бадделеита из меланотроктолита Нижнеталнахского интрузива (обр. $31-16_{bd}$, $\varepsilon_{Hf}=2.0\pm0.6$, см. рис. 6) находится в пределах интервала изотопного состава гафния цирконов (обр. 31-16, ε_{Hf} от -5.9 ± 1.1 до 4.9 ± 2.8 , см. рис. 6). Начальный изотопный состав гафния бадделеита и циркона Нижнеталнахского интрузива отличается от такового промышленнорудоносных и рудоносных интрузивов и, вероятно, отражает взаимодействие мантийных магм с литосферой, представленной либо веществом древней коры, либо субконтинентальной мантии.

По результатам комплексных изотопно-геохимических исследований Lu-Hf систематики циркона и бадделеита и Sm-Nd систематики различно рудоносных пород интрузива Норильск-1 (рис. 3) в [15]) выявлены три контрастных кластера Hf–Nd параметров, которыми обладают различные по составу и рудоносности породы данного интрузива (рис. 7). Циркон и бадделеит из нерудоносных габброидов расслоенной серии характеризуются "радиогенным" начальным изотопным составом гафния (ϵ Hf_(t) варьирует от 7.3 ± 1.1 до 11.4 ± 0.3), свойственным для "ювенильного" источника, который отражает доминирующую роль компонента DM (деплетированной мантии). Менее "радиогенные" изотопные значения ¹⁷⁶Hf/¹⁷⁷Hf, характерные для цирконов из рудоносных пород ($\epsilon H f_{(t)}$ от 4.9 ± 1.4 до 6.4 ± 1.2) и габбро-диоритов (є $Hf_{(t)} = -1.2 \pm 1.9$), свидетельствуют об участии других источников, вероятно эквивалентных компонентам субконтинентальной литосферной мантии и континентальной коры соответственно. Значительный диапазон начальных значений ¹⁷⁶Hf/¹⁷⁷Hf в нерудоносных и рудоносных породах указывает на взаимодействие

Рис. 5. Нf-изотопные эволюционные диаграммы для бадделеитов Норильской провинции. DM – деплетированная мантия, CHUR – хондритовый универсальный резервуар.

Рис. 6. Нf-изотопные эволюционные диаграммы для цирконов и бадделеита Нижнеталнахского интрузива. DM – деплетированная мантия, CHUR – хондритовый универсальный резервуар; номера образцов соответствуют таковым на рис. 4 в [3].

Рис. 7. Зависимость єHf(t) в цирконе от єNd(t) в породе интрузива Норильск-1. Номера образцов соответствуют таковым на рис. 1 в [4].

Мантийная и коровая последовательности (серое) по данным работы [20].

различных источников магм при формировании интрузива Норильск-1.

ЗАКЛЮЧЕНИЕ

Впервые определен возраст монацита и бадделеита из различной степени рудоносных пород ультрамафит-мафитовых интрузивов Норильской провинции (промышленно-рудоносных Норильского и Талнахского, рудоносных Зуб-Маркшейдерского, Южнопясинского и Черногорского и слаборудоносного Нижнеталнахского). Приведены дополнительные аргументы в пользу длительной эволюции ультрамафит-мафитовых интрузивов Норильской провинции в интервале 220– 340 млн лет назад.

Новые Hf-изотопные данные указывают на значительную роль "ювенильного" мантийного источника в бадделеите рудоносных ультрамафит-мафитовых интрузивов. Менее "радиогенный" Hf-изотопный состав циркона и бадделеита Нижнеталнахского интрузива свидетельствует в пользу взаимодействия мантийных магм с литосферой, представленной либо веществом древней коры, либо субконтинентальной мантии, которые обладают сходными изотопными параметрами. На основании данных Hf–Ndизотопной систематики впервые охарактеризованы контрастные источники вещества, участвовавшие в формировании в различной степени рудоносных пород ультрамафит-мафитового интрузива Норильск-1. Совмещение специальной технологии минералогических работ для выделения акцессорных минералов из пород с аналитическими методами изотопного анализа in situ в нашем исследовании обеспечило получение детальной информации относительно длительности образования и происхождения пород ультрамафит-мафитовых интрузивов Норильской провинции. Полученные результаты свидетельствуют о том, что промышленнорудоносные интрузивы Норильского региона имели значительно более сложную геологическую историю, чем это ранее предполагалось.

Исследование выполнено при финансовой поддержке РФФИ (грант № 13-05-00671-а).

СПИСОК ЛИТЕРАТУРЫ

- Геология и полезные ископаемые России. Т. З. Восточная Сибирь / Ред. Н.С. Малич, Е.П. Миронюк, Е.В. Туганова. СПб.: ВСЕГЕИ, 2002. 396 с.
- Кнауф В.В. К метрологическому обеспечению минералогических работ // Зап. ВМО. 1996. Т. 125. (Вып. 6). С. 109–113.
- Малич К.Н., Баданина И.Ю., Туганова Е.В. Магматическая эволюция ультрамафит-мафитовых интрузивов Норильской провинции (Россия): вещественные и геохронологические данные // Литосфера. 2010. Т. 10, № 5. С. 37–63.
- 4. Малич К.Н., Баданина И.Ю., Белоусова Е.А., Туганова Е.В. U-Pb результаты датирования циркона и

бадделеита ультрамафит-мафитового интрузива Норильск-1 (Россия) // Геология и геофизика. 2012. Т. 53, № 2. С. 163–172.

- Митрофанов Ф.П., Баянова Т.Б., Корчагин А.У. и др. Восточно-Скандинавская и Норильская плюмовые базитовые обширные изверженные провинции Pt-Pd руд: геологическое и металлогеническое сопоставление // Геология руд. месторождений. 2013. Т. 55, № 5. С. 357–373.
- Петров О.В., Малич К.Н., Туганова Е.В. и др. Опытно-методические работы по разработке прогнозно-поискового изотопно-геохимического комплекса на металлы платиновой группы, золото, медь, никель и кобальт в расслоенных массива севера Центральной Сибири (Красноярский край) // Изв. ВСЕГЕИ. 2008. Т. 8 (56). СПб.: ВСЕГЕИ, 2009. С. 248–262.
- Bayanova T., Ludden J., Mitrofanov F. Timing and duration of Palaeoproterozoic events producing orebearing layered intrusions of the Baltic Shield: metallogenic, petrological and geodynamic implications // Geological Society, London. Special Publications. 2009. V. 323. P. 165–198.
- Bouvier A., Vervoort J.D., Patchett P.J. The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets // Earth Planet. Sci. Lett. 2008. V. 273. P. 48–57.
- Czamanske G.K., Zen'ko T.E., Fedorenko V.A. et al. Petrography and geochemical characterization of ore-bearing intrusions of the Noril'sk type, Siberia; with discussion of their origin // Resource Geology Special Issue. 1995. V. 18. P. 1–48.
- Dyuzhikov, O.A., Distler, V.V., Strunin, B.M. et al. Geology and metallogeny of sulfide deposits of the Noril'sk region, USSR. Society of Economic Geologists Special Publication 1. 242 p.
- 11. Griffin W.L., Powell W.J., Pearson N.J., O'Reilly S.Y. Appendix 2. GLITTER: data reduction software for laser ab-

lation ICP-MS // Laser Ablation–ICP–MS in the Earth Sciences, Mineralogical Association of Canada Short Course Series / Ed. P. Sylvester. 2008. V. 40. P. 204–207.

- 12. Griffin W.L., Wang X., Jackson S.E., Pearson N.J., O'Reilly S.Y., Xu X., Zhou X., 2002b. Zircon chemistry and magma genesis, SE China: in-situ analysis of Hf isotopes, Pingtan and Tonglu igneous complexes // Lithos. 2002. V. 61. P. 237–269.
- Jackson S.E., Pearson N.J., Griffin W.L., Belousova E.A. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology // Chem. Geol. 2004. V. 211. P. 47–69.
- Malitch K.N., Belousova E.A., Griffin W.L., Badanina I.Yu. Hafnium-neodymium constraints on source heterogeneity of the economic ultramafic-mafic Noril'sk-1 intrusion (Russia) // Lithos. 2013. V. 164–167. P. 36–46
- Malitch K.N., Belousova E.A., Griffin W.L., Badanina I.Yu., Pearson N.J., Presnyakov S.L., Tuganova E.V. Magmatic evolution of the ultramafic-mafic Kharaelakh intrusion (Siberian Craton, Russia): insights from traceelement, U-Pb and Hf-isotope data on zircon // Contrib. Mineral. Petrol. 2010. V. 159, № 6. P. 753–768.
- Montel J.-M., Foret S., Veschambre M., Nicollet C., Provost A. Electron microprobe dating of monazite // Chem. Geol. 1996. V. 131, № 1–4. P. 37–53.
- Pin C., Joannon S., Bosq Ch., Le Fèvre B., Gauthier P.J. Precise determination of Rb, Sr, Ba, and Pb in geological materials by isotope dilution and ICP-quadrupole mass spectrometry following separation of the analytes // J. Anal. Atom. Spectrom. 2003. V. 18. P. 135–141.
 Richard P., Shimizu N., Allègre C.J. ¹⁴³Nd/¹⁴⁶Nd, a natu-
- Richard P., Shimizu N., Allègre C.J. ¹⁴³Nd/¹⁴⁶Nd, a natural tracer: an application to oceanic basalts // Earth Planet. Sci. Lett. 1976. V. 31. P. 269–278.
- 19. Scherer E., Munker C., Mezger K. Calibration of the lutetium-hafnium clock // Sci. 2001. V. 293. P. 683–687.
- Vervoort J.D., Patchett P.J., Blichert-Toft J., Albarede F. Relationships between Lu–Hf and Sm–Nd isotopic systems in the global sedimentary system // Earth Planet. Sci. Lett. 1999. V. 168. P. 79–99.