МИНЕРАЛОГИЯ

ГЕОХИМИЧЕСКИЕ ОСОБЕННОСТИ ПИРИТА И МАРКАЗИТА ИЗ КОР ВЫВЕТРИВАНИЯ И "ДРЕВНИХ" РЫХЛЫХ ОТЛОЖЕНИЙ АКТАЙСКОЙ ПЛОЩАДИ (СЕВЕРНЫЙ УРАЛ)

© 2014 г. О. Б. Азовскова, Н. В. Уточкина, Т. П. Зубова*

Актайская перспективная площадь (россыпное золото и платина, золотоносные коры выветривания) расположена в 250 км к северу от г. Екатеринбурга, на широте городов Верхотурье и Новая Ляля. В структурном отношении район исследований находится на сочленении Тагильского и Восточно-Уральского мегаблоков, которые разделены широкой зоной Серовско-Маукского глубинного разлома. При этом Актайская площадь принадлежит "тагильской" половине, включая и часть разломной зоны.

Геологическое строение территории определяется наличием двух геоструктурных этажей - нижнего палеозойского и верхнего мезозойско-кайнозойского. Палеозойские комплексы представлены различными вулканогенными, вулканогенноосадочными, вулканогенно-терригенными и терригенно-карбонатными образованиями в возрастном диапазоне от верхнего ордовика – нижнего силура до среднего девона. Значительно менее распространены интрузивные образования, представленные ультрабазитами и габбро-пироксенитами зоны Серовско-Маукского разлома (северное продолжение Восточно-Тагильского массива), малыми телами гранитоидов ауэрбаховского комплекса (средний девон), долеритами и габбродолеритами ивдельского комплекса (верхний девон), а также различными субвулканитами. Одной из особенностей Актайской площади является сложстроение мезозойско-кайнозойского геоное структурного этажа и присутствие здесь широкого спектра рыхлых образований различного возраста и генезиса. Они представлены следующими комплексами: 1) мезозойские коры выветривания остаточные (элювиальные, eMZ) и перемещенные (элювиально-делювиальные карстовые, ed-MZ); 2) средневерхнеюрские аллювиальные, озерные и озерно-аллювиальные отложения лангурской свиты (J₂₋₃*ln*); 3) верхнемеловые морские отложения прибрежной и шельфовой зон (камышловская, К₂km, фадюшинская, К₂fd, свиты); 4) верхнепалеоценовые - среднезоценовые отложения, связанные с палеогеновой морской трансгрессией (серовская свита и ирбитская свита); 5) континентальные осадки неогена (наурзумская свита нижнего -

среднего миоцена, каракольская серия верхнего миоцена – нижнего плиоцена, кустанайская свита верхнего плиоцена); 6) четвертичными отложениями различного генезиса (Q₁₋₄), а также нерасчлененными элювиально-делювиальными плиоценчетвертичными образованиями. Хорошая сохранность мезокайнозойской части разреза определяется положением площади в пределах Ивдельско-Тагильской эрозионно-структурной мезозойской депрессии (ЭСД) и широким развитием здесь карбонатных (карстующихся) пород.

На описываемой территории, как и на всем Урале, малоглубинные (до 20-30 м) золотые и комплексные россыпи в значительной степени выработаны. В настоящее время накоплен достаточный опыт по извлечению благородных металлов из различных рыхлых образований с использованием подземного и кучного выщелачивания, а также комплексных методов (гравитационный + флотационный + химическое извлечение). Это делает актуальным определение потенциала золотоносности (и платиноносности) погребенных осадочных образований юры, мела и палеогена, а также залегающих под ними кор выветривания, ранее в этом плане не изучавшихся из-за отсутствия технологий отработки. Наиболее привлекательными для изучения являются протяженные зоны ЭСД, в которых отмечены повышенные мощности кор выветривания и сохраняется наиболее полный разрез осадочных отложений мезокайнозоя [10].

Перспективы Актайской площади определяются не только указанными выше особенностями геолого-структурной позиции и геоморфологии, но и положительными результатами поисковых и научно-исследовательских работ на близких по геологическому строению объектах, большинство из которых принадлежат к той же региональной тектонической структуре – зоне Серовско-Маукского глубинного разлома (Крылатовская, Красноуральская, Северо-Красноуральская и Екатерининская площади, Ивдельский рудно-россыпной район). Следует отметить, что на всех этих объектах были установлены признаки "молодых" (активизационных) низкотемпературных рудогенных процес-

^{*} ЦНИГРИ, г. Москва.

N⁰	Номер пробы	Анализируемый материал	Исходная проба	
П.П.			Литологический состав	Геол. индекс
1	1024/1	Окисленный пирит с	Глинисто-песчано-дресвяный материал со щебнем	adQ ₂₋₃
		кварцем	и редкой галькой кварца и вулканогенных пород	
2	206/5.0-5.5	Пирит	Существенно глинистые белесые и светло-охрис-	edMZ
			тые отложения с дресвой и единичной галькой	
3	206/7.5-8.0	- " -	То же	edMZ
4	3135/22-23	Марказит	Зеленовато-серые песчано-глинистые отложения	lmK ₂ fd
5	3135/46-47	_ " _	Песчано-глинистые отложения с галькой и грави-	laJ ₂₋₃ ln
			ем кварца (окат. 3 балла)	
6	3135/60-61 агрег	Пирит агрегативный	Глинистые коры выветривания по туфопесчаникам	eMZIII
7	3135/60-61 крист	Пирит кристаллический	То же	eMZIII
8	3159/38-39	Пирит-марказит, т/з	Глинисто-песчаные отложения с хорошо окатан-	aJ ₂₋₃ ln
9	3159/40-41	Пирит	ной галькой (4 балла)	
10	3159/49-50	_ " <u> </u>	Глинистые коры выветривания по туфопесчаникам	eMZIII
11	3151/40-41 крист	- "	То же	eMZIII
12	3151/40-41 агрег	Пирит, плотные агрегаты	<u> </u>	eMZIII

Таблица 1. Общая характеристика исследованных проб

сов, которые наложены на рыхлые мезозойские, реже кайнозойские осадочные отложения и коры выветривания. В некоторых случаях установлен их значимый вклад в общий баланс металла, особенно это касается остаточных и перемещенных кор выветривания и континентальных юрских отложений [2, 4, 5, 7]. Проявление таких процессов в существенно глинистых образованиях довольно трудно обнаружить. Одним из характерных признаков является присутствие сульфидной минерализации, ее распространение по разрезу и площадные ореолы пиритизации (± марказит) в рыхлых образованиях разного генезиса [1-3, 14]. Следует, однако, учитывать, что для некоторых генетических типов осадков (например, морских и озерных отложений) свойственно присутствие диагенетического пирита и марказита, а наложенная поздняя пиритизация может быть связана не только с золотоносными процессами. Морфологические, минералогические и геохимические особенности пирита и в меньшей степени марказита отражают как исходные условия образования, так и последующие изменения среды и могут служить маркерами той или иной рудоносной системы [8, 11, 13 и др.].

В настоящее время на Актайской площади проводятся поисковые работы на россыпное золото и платину силами ОАО "УГСЭ" и ФГУП ЦНИГРИ. По материалам этих работ нами проведено исследование микроэлементного состава монофракций пирита и марказита методом ICP-MS с дополнительным определением Au, Ag, Pt, Pd (спектрометр "Elan-6100" фирмы Perkin-Elmer, Аналитический центр ФГУП ЦНИГРИ, аналитик Е.Д. Торина). Всего изучено 12 монофракций дисульфидов железа выделенных из 10 шлиховых проб (начальный объем 8–26 дм³), отобранных из керна поисковых и картировочных скважин (табл. 1). Опробовались рыхлые породы, относящиеся к различным комплексам: прибрежно-морские отложения фадюшинской свиты верхнего мела, средневерхнеюрские аллювиальные и озерно-аллювиальные отложения лангурской свиты, ложковые отложения четвертичного возраста, а также элювиальные и элювиально-делювиальные образования мезозойской коры выветривания. В двух пробах из кор выветривания отдельно исследован мелкокристаллический и агрегативный пирит. Последний представляет собой неправильной формы обособления, сложенные плотным агрегатом тонкозернистого и весьма тонкозернистого пирита.

Содержание благородных металлов (Au, Ag, Pt, Pd) и их соотношение в выделенных монофракциях сульфидов приведены в табл. 2 и на рис. 1а. Результаты анализов показывают значимое содержание золота (от 0.24 до 15.83 г/т) во всех исследованных пробах, что соответствует данным, которые приводятся для пиритов золоторудных и золотосодержащих объектов [13]. Максимальное количество золота установлено в агрегативном пирите из кор выветривания (15.83 г/т) и пирит-марказитовом агрегате из аллювиальных глинисто-песчаных отложений лангурской свиты (6.24 г/т), в этой пробе также определено наиболее высокое содержание платины и палладия (Pt – 0.65 и Pd – 1.88 г/т). На диаграмме (см. рис. 1а) отчетливо видно, что сульфиды из древних осадков мелового и юрского возраста относительно обогащены золотом (1.27-6.24 г/т). В пиритах из кор выветривания наблюдаются значительные вариации содержания, но при этом в пяти из семи исследованных проб золота менее 0.5 г/т. Следует также отметить, что в одних и тех же пробах из кор выветривания содержание золота и серебра в агрегативном пирите выше, чем в мелкокристаллическом. В целом явной корреляции между золотом и серебром, золотом и платиноидами не наблюдается. Также нет принципиальной разницы

АЗОВСКОВА и др.

	-			-	-		
№ п.п.	Номер пробы	Анализируемый материал	Au	Ag	Pt	Pd	Свободное золото в пробе
1	1024/1	Окисленный пирит с кварцем	0.52	3.32	0.40	1.94	Нет данных
2	206/5.0-5.5	Пирит	0.53	1.15	0.05	0.19	++
3	206/7.5-8.0	_ " _	0.46	0.90	0.11	0.32	++
4	3135/22-23	Марказит	1.67	0.68	< 0.05	0.98	+++ (тонкое)
5	3135/46-47	_ " _	2.93	1.62	< 0.05	0.13	+++ (тонкое)
6	3135/60-61 агрег	Пирит, плотные агрегаты	15.83	1.39	< 0.05	0.13	++ (тонкое)
7	3135/60-61 крист	Пирит кристаллический	0.25	0.32	0.23	0.46	Не. опр.
8	3159/38-39	Пирит-марказит, т/з	6.24	1.92	0.65	1.88	+++
9	3159/40-41	Пирит	1.27	0.33	0.15	0.87	+++
10	3159/49-50	— " —	0.24	2.26	0.43	1.13	Не. опр.
11	3151/40-41 крист	— " —	0.29	0.20	< 0.05	0.06	+
12	3151/40-41 агрег	Пирит, плотные агрегаты	1.03	1.67	< 0.05	0.15	Не. опр.

Таблица 2. Содержание золота, серебра, платины и палладия в пирите и марказите Актайской площади (г/т)

Примечание. "+" - единичные знаки, "++" - знаки, "+++" - обилие. Не опр. - не определялось.

Рис. 1. Диаграмма распределения благородных металлов и кобальт-никелевого отношения в монобрекчиях пирита и маркезита Актайской площади.

a – соотношение содержания Au–Ag–Pt–Pd; б – соотношение кобальта и никеля (I – зона развития осадочного диагенетического пирита (Co/Ni < 0.1), II – зона преимущественного развития гидротермального пирита, "незолоторудного" (Co/Ni 0.1–1.5), III – зона, характерная для пиритов золоторудных месторождений (Co/Ni 1.5–10) [8], справа показаны геологические индексы исходных проб, из которых извлечены сульфиды); в – сопоставление Co/Ni-отношения с содержанием золота; г – сопоставление Co/Ni-отношения с содержанием серебра и палладия.

в содержании благородных металлов между пиритом и марказитом.

Во всех исследованных пробах отмечается довольно высокое содержание палладия (до 1.94 г/т)

ЕЖЕГОДНИК-2013, Тр. ИГГ УрО РАН, вып. 161, 2014

Элемент	1	2	3	4	5	6	7	8	9	10	11	12
Li	3.52	2.14	4.73	2.93	1.11	0.86	0.53	0.86	0.84	1.37	0.14	0.74
Be	0.60	0.28	0.43	0.16	0.17	0.08	0.09	0.09	0.13	0.20	0.03	0.06
В	21.1	<10	<10	<10	<10	<10	<10	<10	<10	66.2	<10	64.8
Sc	39.6	7.61	10.2	12.8	5.96	5.21	3.10	7.91	4.38	13.2	< 0.10	5.24
Ti	23488	6521	19897	1167	382	249	653	1454	1481	1572	118	286
V	138	79.37	64.55	<20	<20	<20	<20	<20	<20	84.9	<20	<20
Cr	130	15.9	23.0	144	348	13.9	6.92	328	49.6	217	15.9	33.1
Mn	390	64.95	65.05	113	190	130	90.9	249	237	151	82.1	66.3
Со	246	238	150	1049	486	392	240	249	96.0	153	20.6	91.1
Ni	43.0	301	341	880	2633	1045	240	1990	1186	1513	65.10	408
Cu	836	128	229	59.0	22.0	20.3	75.8	4575	96.9	7640	33.2	475
Zn	137	38.3	41.6	28.1	35.3	555	28.8	2104	53.1	2477	11.2	95.7
Ga	10.2	1.61	5.93	1.48	3.89	0.53	0.38	1.04	0.75	1.66	0.29	0.62
Ge	1.47	0.84	2.27	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.34	< 0.10	< 0.10
As	272	404	359	148	90.3	88.9	61.1	173	462	287	<10	111
Se	4.30	12.04	9.42	3.35	31.82	<1.0	<1.0	<1.0	<1.0	8.82	<1.0	<1.0
Rb	3.59	0.95	1.36	2.91	0.79	1.01	0.65	1.79	1.35	2.05	0.99	1.71
Sr	360	7.29	23.14	6.36	2.07	8.84	2.30	10.8	6.73	9.70	1.96	5.65
Y	31.7	3.85	7.07	28.7	2.37	2.12	7.68	26.1	18.0	17.2	0.82	2.53
Zr	899	95.0	258	17.9	4.11	20.6	391	1033	323	1051	5.42	14.6
Nb	51.9	11.4	40.8	4.69	<1.0	<1.0	<1.0	3.11	2.84	5.04	<1.0	<1.0
Мо	2.24	5.80	8.57	83.9	68.1	39.1	12.7	400	143	85.1	25.0	38.3
Cd	0.95	0.57	0.30	0.50	1.41	0.14	< 0.10	0.95	0.67	1.31	< 0.10	0.33
In	0.04	0.09	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Sn	8.53	2.96	2.96	3.90	3.09	2.74	<1.0	<1.0	<1.0	11.5	2.32	<1.0
Sb	17.0	91.0	86.6	6.83	6.69	2.88	4.66	5.65	3.71	7.22	0.78	10.15
Те	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Ι	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	23.52	<1.0	<1.0
Cs	0.19	0.12	0.13	0.20	0.06	0.10	0.03	0.18	0.15	0.90	0.33	0.48
Ba	70.0	15.2	22.8	67.9	16.3	363	18.5	28.9	38.7	59.8	20.9	28.0
Hf	31.6	2.84	7.86	1.29	0.09	0.62	14.7	34.4	9.82	31.8	0.10	0.38
Та	3.12	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.21	<1.0	<1.0
W	7.39	<1.0	4.91	<1.0	<1.0	<1.0	10.0	869	9.94	210	4.85	5.01
Re	< 0.01	0.01	< 0.01	0.03	0.03	0.01	< 0.01	0.07	0.06	0.08	< 0.01	< 0.01
Hg	< 0.50	12.3	8.21	1.51	< 0.50	< 0.50	1.10	2.03	< 0.50	4.24	< 0.50	< 0.50
TĨ	< 0.10	7.30	12.4	6.92	16.2	6.15	5.31	1.28	1.62	2.54	< 0.10	1.05
Pb	4327	171	210	54.1	1125	38.4	43.2	97.3	32.1	434	22.3	123
Bi	5.90	0.44	< 0.10	0.50	< 0.10	< 0.10	< 0.10	1.64	< 0.10	1.42	< 0.10	< 0.10
Th	8.73	1.33	2.06	9.26	3.24	0.34	1.54	6.05	14.7	10.4	0.11	0.16
U	6.23	0.92	1.91	1.94	< 0.01	< 0.01	3.08	8.11	3.81	4.21	0.06	0.14
Th/U	1.4	1.4	1.1	4.8	648	68	0.5	0.7	3.9	2.5	1.9	1.2
Co/Ni	5.7	0.7	0.9	1.2	0.2	0.4	1.0	0.1	0.1	0.1	0.3	0.2

Таблица 3. Содержание микроэлементов в пирите и марказите Актайской площади (г/т)

Примечание. Характеристика проб и авторские номера приведены в табл. 1

и в половине проб – аномальное содержание платины (до 0.65 г/т). Примечательно, что повышенное содержание Pt и Pd установлено во всех пробах из скважины 3159, независимо от типа сульфидов и характеристик первичных проб (см. табл. 1 и 2). В литературе, где рассматривается микроэлементный состав пиритов, данные по содержанию ЭПГ не приводятся. Согласно проведенным ранее исследованиям, на объектах, расположенных к югу от Актайской площади [1, 3], аномально высокое содержание платиноидов было установлено в пиритах из кор выветривания и неоген-четвертичных осадков Красноуральской площади (Pt – до 0.13, Pd – до 1.08, Ru – до 0.45 г/т), а также в отдельных пробах пиритов из кор выветривания Северо-Красноуральской площади (Pt – до 0.17, Pd – до 4.27, Ru – до 0.2 г/т).

Характеристика микроэлементного состава дисульфидов железа из рыхлых отложений Актайской площади приведена в табл. 3. Одним из важных критериев, отражающих генезис пирита (и марказита), является кобальт-никелевое отношение [8, 13 и др.]. На диаграмме соотношения Со–Ni (см. рис. 1б) видно, что половина исследованных монофракций сульфидов попадают в поле диагенетического пирита (Со/Ni < 0.1) или близки к нему.

Рис. 2. Распределение "рудогенных" микроэлементов в пирите и марказите Актайской площади.

а – сульфиды из глинистых кор выветривания; б – сульфиды из рыхлых осадочных отложений; в и г – сульфиды из отложений разного типа скважин 3135 и 3159; д – сопоставление микроэлементного состава идиоморфного кристаллического и агрегативного пирита из кор выветривания; е – сопоставление микроэлементного состава сульфидов из всех типов отложений (усредненные данные). Характеристика проб приведена в табл. 1.

Остальные с разбросом распределены в поле гидротермального пирита (Co/Ni 0.1–1.5), и только одна проба (из ложковых среднечетвертичных отложений) соответствует пиритам золоторудных месторождений (Co/Ni 1.5–10) [8]. Относительно низкие значения Co/Ni отмечаются и в пробах из юрских отложений, и в части проб из кор выветривания. В то же время максимальные значения этого показателя наблюдаются в сульфидах из осадочных образований – прибрежно-морских меловых и четвертичных ложковых отложений. Как видно из диаграмм на рис. 1в и г, прямой корреляции между значениями Со/Ni-отношения и содержанием благородных металлов не наблюдается. Однако при разделении проб на условные группы по уровню содержания Au и Ag (г/т) устанавливаются определенные закономерности (интервал содержаний/ Co/Ni-средн.):

а) для золота: >5.0/0.25, 1.0-5.0/0.42, <1.0/0.52;

б) для серебра: >1.5/0.13, 1.0–1.5/0.38, <1.0/0.72 (проба 1 с аномально высоким значением Co/Ni не учитывалась).

Таким образом, выстраивается необычная отрицательная корреляция между содержанием золота и серебра и значением Co/Ni-отношения. Можно отме-

ЕЖЕГОДНИК-2013, Тр. ИГГ УрО РАН, вып. 161, 2014

Элемент	1	2	3	4	5	6	7	8	9	10	11	12
	adQ ₂₋₃	edMZ	edMZ	lmK ₂	laJ ₂₋₃	eMZ	eMZ	aJ ₂₋₃	aJ ₂₋₃	eMZ	eMZ	eMZ
La	43.90	10.83	11.87	13.81	16.12	1.87	3.35	31.94	24.29	50.43	0.99	2.32
Ce	99.67	21.89	20.35	27.42	34.86	4.41	8.18	69.73	52.12	107.50	1.95	4.55
Pr	13.30	2.49	2.67	3.05	3.64	0.49	0.86	8.47	6.40	11.68	0.25	0.56
Nd	46.18	7.87	9.13	9.61	10.72	1.65	3.06	27.26	21.81	37.01	0.90	2.21
Sm	9.53	1.23	1.76	1.76	1.65	0.31	0.66	4.42	3.82	6.14	0.20	0.45
Eu	2.56	0.37	0.56	0.29	0.18	0.11	0.16	0.80	0.96	0.57	0.05	0.17
Gd	9.33	1.11	1.86	2.80	1.27	0.38	0.86	4.72	3.92	5.60	0.20	0.58
Tb	1.37	0.15	0.28	0.56	0.17	0.06	0.17	0.75	0.56	0.73	0.03	0.09
Dy	8.30	0.90	1.73	4.34	0.74	0.42	1.41	5.36	3.88	4.19	0.18	0.59
Но	1.45	0.16	0.30	0.81	0.10	0.07	0.30	1.10	0.73	0.73	0.03	0.10
Er	4.54	0.47	0.96	2.71	0.26	0.21	1.11	4.12	2.48	2.30	0.10	0.32
Tm	0.71	0.07	0.16	0.47	0.03	0.03	0.22	0.76	0.41	0.45	0.01	0.05
Yb	5.57	0.61	1.29	3.41	0.19	0.27	1.94	6.47	3.33	3.34	0.10	0.34
Lu	0.78	0.09	0.17	0.49	0.02	0.04	0.33	1.00	0.47	0.55	0.01	0.05
Y	31.72	3.85	7.07	28.73	2.37	2.12	7.68	26.06	17.98	17.18	0.82	2.53
Геохимические коэффициенты												
REE+Y	278.91	52.09	60.16	100.27	72.34	12.45	30.29	192.96	143.14	248.40	5.82	14.91
Ce/La	2.27	2.02	1.71	1.99	2.16	2.35	2.44	2.18	2.15	2.13	1.97	1.96
La/Yb	7.88	17.72	9.18	4.05	83.54	6.94	1.73	4.94	7.30	15.12	9.74	6.91
E^{N}/E^{N*}	0.82	0.94	0.93	0.40	0.36	0.98	0.63	0.53	0.75	0.29	0.75	1.03

Таблица 4. Содержание РЗЭ в пирите и марказите Актайской площади (г/т) и значение некоторых геохимических коэффициентов

Примечание. $E^{N}/E^{N*} = E^{N}/(Sm^{N}+Gd^{N})/2$.

тить, что относительно низкие Co/Ni-отношения наблюдаются в пиритах малоглубинных Au-рудных месторождений [13]. Возможно, что в нашем случае выявленные особенности связаны с фактически приповерхностными условиями образования сульфидов.

Особенности распределения характерных "рудогенных" микроэлементов (Co, Ni, Cr, Cu, Zn, Pb, Ba, As, Sb, Ag, Au, Mo, Sn, W) в разных группах проб показаны на диаграммах (рис. 2). При общем довольно большом разбросе значений можно выделить некоторые закономерности. В группах проб из кор выветривания и осадочных отложений (см. рис. 2а, б) наблюдается меньше сходства между отдельными графиками распределения микроэлементов, чем в группах проб из разных типов отложений на разных уровнях разреза в одной скважине (см. рис. 2в, г). Однако на диаграмме, показывающей обобщенные данные (см. рис. 2е), видно значительное сходство графиков из остаточных и перемещенных кор выветривания и юрских отложений. Следует также отметить, что мелкокристаллический пирит из кор выветривания относительно обеднен всеми элементами по сравнению с агрегативным пиритом из тех же проб (см. рис. 2д). Нередко наблюдается очень высокое содержание ряда характерных элементов, в основном это касается проб из кор выветривания, аллювиальных юрских и аллювиально-делювиальных четвертичных отложений, г/т: Си и Zn – до n×1000; As – до 460; Sb – до 91; Мо – до 400; W – до 860; Pb – до п×1000. Аналогичные уровни содержания этих элементов

характерны для пиритов из кор выветривания Красноуральской и Северо-Красноуральской площадей. И в осадочных образованиях, и в корах выветривания наблюдается большой разброс в значениях торий-уранового отношения (табл. 3), причем аномально высокое – в пробах из одной скважины, но из отложений разного возраста и генезиса.

Высокое содержание As, Cu, Zn, Pb, Mo, W, Sb и некоторых других элементов не характерно для диагенетического пирита осадочных и метаморфогенно-осадочных комплексов [8, 12, 13]. По сравнению с пиритом из близких по возрасту и генезису отложений Воронежской антеклизы [12] пирит и марказит из юрских и меловых осадков Актайской площади содержат значительно меньше Cr, Mn, Ba и заметно больше Co, Ni, Mo, Hg, Bi, Th, а также нередко относительно обогащены Cu, Zn, Pb, W. Наиболее высокое содержание Ni, Cu, Zn, Pb, Mo и W, скорее всего, связано с присутствием включений соответствующих сульфидных или самородных фаз, как это наблюдалось на других объектах [1, 14].

Особенности распределения РЗЭ в исследованных сульфидах (рис. 3, табл. 4) свидетельствуют об их генетической неоднородности. На диаграммах видно, что общие черты и различия (как и для "рудогенных" элементов) не зависят от типа вмещающих пород. Тем не менее наблюдается некоторая обогащенность РЗЭ в пирите и марказите из осадочных отложений по сравнению с пиритом из кор выветривания (см. рис. 3а, б и табл. 4). Проведен-

Рис. 3. Распределение РЗЭ и иттрия в пирите и марказите Актайской площади (нормировано по хондриту).

а – сульфиды из глинистых кор выветривания; б – сульфиды из рыхлых осадочных отложений; в и г – сульфиды из отложений разного типа скважин 3135 и 3159; д – сопоставление распределения РЗЭ в идиоморфном кристаллическом и агрегативном пирите из кор выветривания; е – сопоставление распределения РЗЭ в сульфидах из всех типов отложений (усредненные данные). Характеристика проб приведена в табл. 1.

ные ранее исследования по пиритам Красноуральской площади [1] дают противоположную картину – значительное сходство в форме графиков и относительную обогащенность РЗЭ "корового" пирита по сравнению с пиритом неоген-четвертичных осадков. Следует отметить, что пириты из близких по возрасту осадочных комплексов Воронежской антеклизы содержат почти на порядок меньше REE+Y [12], чем актайские.

Наибольшее сходство по форме кривых и содержанию РЗЭ наблюдается в пробах из отложений разного генезиса скважины 3159 (см. рис. 3г), а также в агрегативном пирите из разных проб (см. рис. 3д). Кристаллический пирит из этих же проб в одном случае очень близок по форме кривой к агрегативному пириту и отличается в основном значительно меньшим содержанием РЗЭ, а в другом случае наибольшее подобие наблюдается с кривыми распределения РЗЭ пирита из аллювиальных юрских отложений (см. рис. 3б, д). На обобщенной диаграмме (см. рис. 3е) видно сходство сульфидов из юрских и меловых отложений и близость к ним пирита из кор выветривания, график которого отличается более выраженным отрицательным наклоном. Также очень близки по форме (выположены) графики распределения РЗЭ в пиритах из перемещенных кор выветривания и ложковых четвертичных отложений. Возможно, это связано с заимствованием материала при размыве элювиально-делювиальных мезозойских образований.

Для уточнения природы сульфидов в осадочных отложениях используются некоторые геохимические коэффициенты [5, 9, 12], их значения приведены в табл. 4. По величине отношения La/Yb все исследованные сульфиды (за исключением пробы 10) имеют умеренную и высокую степень дифференцированности РЗЭ. Церий-лантановое отношение является индикатором гидрогенного (Ce/La > 2) и гидротермального (Če/La < 2) образования пирита (марказита). По этому показателю пириты Актайской площади, за небольшим исключением, занимают промежуточное положение. Об этом же свидетельствует и значения европиевой аномалии (EN/EN*, см. табл. 4), которые в целом выше, чем, например, в сульфидах из одновозрастных осадочных отложений Северного Причерноморья [9], но, за исключением отдельных проб из кор выветривания, недостаточны, чтоб можно было однозначно говорить о гидротермальной природе исследуемых сульфидов.

Обобщая результаты проведенных исследований, можно сделать следующие предварительные выводы.

1. Сульфиды Актайской площади имеют признаки диагенетического, гидротермального и смешанного ("переходный тип" по [9]) происхождения, что может быть связано с воздействием гидротермальных процессов на первично-сульфидизированные осадки или с проявлениями эндогенной активности в период морских трансгрессивных циклов.

2. Несмотря на большой разброс параметров и показателей, отмечается устойчивое геохимическое родство пирита из кор выветривания и пиритамарказита из юрских отложений. Марказит из меловых осадков во многом сходен с ними, а основные отличия, вероятно, связаны с резко различными условиями формирования пород (континентальный и морской режим).

3. Содержание золота и других благородных металлов в исследованных дисульфидах железа свидетельствует об их принадлежности к золотоносным или золотосодержащим рудно-метасоматическим системам.

4. Необычной и требующей дальнейшего изучения представляется тенденция повышения содержания золота и серебра в пирите и марказите при снижении значения Co/Ni-отношения.

Исследования поддержаны инициативным проектом фундаментальных исследований, финансируемых из средств УрО РАН (проект № 12-У-5-1042).

СПИСОК ЛИТЕРАТУРЫ

- Азовскова О.Б., Зубарев К.А., Ронкин Ю.Л., Некрасова А.А., Магазина Л.О. Первые данные по геохимии пирита зон мезо-кайнозойской активизации на Среднем Урале, связь с эндогенным золотым оруденением // Проблемы геологии рудных месторождений, минералогии, петрологии и геохимии. М: ИГЕМ, 2008. С. 113–117.
- Азовскова О.Б., Михайлов А.П., Некрасова А.А., Зубков А.И. Особенности формирования золотоносных рудно-россыпных систем в зонах долгоживущих глубинных разломов (на примере Серовско-Маукского разлома, Средний Урал) // II Международный горногеологический форум "Золото северного обрамления Пацифика". Магадан, 2011. С. 49–50.
- 3. Азовскова О.Б., Некрасова А.А., Щегольков Ю.В. Характеристика "молодой" пиритовой минерализации зоны Серовско-Маукского разлома (Айвинско-Емехский блок) // Вестн. Уральского отделения РМО. № 8. Екатеринбург: ИГГ УрО РАН, 2008. С. 5–12.
- Александров В.В., Баранников А.Г. Золото-платиноидное оруденение в корах выветривания Екатерининского рудно-россыпного узла (Северный Урал) // Самородное золото: мат-лы Всерос. конф. Т. II. М., 2010. С. 17–19.
- 5. Балашов Ю.А. Геохимия редкоземельных элементов. М.: Наука, 1976.
- 6. Баранников А.Г. Рудоносность заполненного мезозойского карста на Урале: проблемы изучения // Руды и металлы. 2013. № 4. С. 23–29.
- Зубова Т.П., Агибалов О.А., Иванов Н.М. и др. Строение и вещественный состав золотоносных кор химического выветривания Кедровско-Ивдельского рудно-россыпного узла, восточный склон Северного Урала // Руды и металлы. 2013. № 4. С. 37–47.
- Мичурин С.В., Ковалев С.Г., Горожанин В.Н. Генезис сульфатов и сульфидов в нижнерифейских отложениях Камско-Бельского авлакогена и Башкирского мегаантиклинория. Уфа: ДизайнПолиграфСервис, 2009.
- Седаева К.М., Светов С.А., Майорова Т.П., Устюгова К.С. От минералогии до геохимии (на примере пирита породных комплексов Горного Крыма) // Вестн. ПГУ. Сер.: Геол. 2013. Вып. 2(19). С. 40–55.
- Сигов А.П. Металлогения мезозоя и кайнозоя Урала. М.: Недра, 1969.
- Таусон В.Л., Немеров В.К., Развозжаева Э.А. и др. Парагенетические отношения пирита, углерода и золота на месторождении Сухой Лог и типоморфизм поверхности пирита // Докл. АН. 2009. Т. 426, № 4. С. 528–532.
- Шатров В.А., Войцеховский Г.В., Сиротин В.И. Микроэлементы в пиритах чехла Воронежской антеклизы: индикаторные возможности для реконструкций условий осадкообразования // Вестн. ВГУ. Сер.: Геол. 2007. № 2. С. 53–62.
- Юргенсон Г.А. Типоморфизм и рудные формации. Новосибирск: Наука, 2003.
- Azovskova O.B., Malyugin A.A., Nekrasova A.A., Yanchenko M.Yu. Pyrite from zones of Mz-Kz reactivation of large faults on the eastern slope of the Ural Mountains, Russia // WASET. Engineering and Technology. Iss. 79. L., 2013. P. 463–467.