МИНЕРАЛОГИЯ

СОСТАВ ХРОМШПИНЕЛИДОВ ИЗ ОЛИВИН-ШПИНЕЛЬ-ПИРОПОВЫХ ВЕБСТЕРИТОВ МИНДЯКСКОГО МАССИВА

© 2014 г. Д. В. Кузнецов, Е. В. Пушкарёв, И. А. Готтман

Ультрамафитовый массив Миндяк относится к лерцолитовому типу и расположен в меланжевой зоне Главного уральского разлома (ГУР), в 40 км к северо-востоку от Белорецка. Породы представлены в основном шпинелевыми и плагиоклазовыми лерцолитами с небольшим количеством гарцбургитов и дунитов, а также полосчатым верлитклинопироксенит-габбровым краевым комплексом [3]. В северной части массива, на южном склоне горы Атутэ, в 2 км к северу от пос. Миндяк, на границе между лерцолитами и краевым клинопироксенит-габбровым комплексом находится зона развития родингитизированных брекчий сложного состава. Ксенолиты в брекчиях представлены лерцолитами, гранатовыми и шпинелевыми вебстеритами, гранатовыми и безгранатовыми клинопироксенитами, гранатовыми метабазитами, габбро и другими породами [2].

Оливин-шпинель-пироповые вебстериты относятся к одному из наиболее редких типов ультраосновных пород, встречающихся в этих брекчиях. Они развиты в юго-восточной части поля брекчий на небольшом участке размером 25 × 25 м. Пироповые вебстериты образуют блоки размером от первых сантиметров до 40-50 см, заключенные в серпентин-хлоритовые родингиты. С краев фрагменты вебстеритов родингитизируются, замещаясь агрегатом хлорита, серпентина, кальциевых гранатов и других минералов. Мощность родингитовых оторочек составляет 3-4 см. В некоторых пироповых вебстеритах заметна полосчатость, обусловленная чередованием слоев с разным содержанием граната. Структура пород варьирует от средне- до крупнозернистой с размером зерен минералов 2-6 мм. Микроструктура пород гранобластовая, с элементами порфирокластической. Породы состоят из ортопироксена (30-40%), клинопироксена (30-40%), оливина (5-10%), пиропа (5-15%), хромшпинелида (<2%) и амфибола, количество которого сильно варьирует и может достигать 30-40% [2]. Состав оливин-шпинель-пироповых вебстеритов приведен в табл. 1. Средний химический состав этих пород следующий, мас. %: SiO₂ – 44.6, Al₂O₃ – 8.4, FeO – 3.7, Fe₂O₃ – 3.6, MgO – 25.9 и CaO – 9.2, они обладают высоким CaO/Al₂O₃ – отношением, превышающим 1.0, что отличает их от гра-

Таблица 1. Содержание петрогенных элементов (мас. %), Rb и Sr (г/т) в оливин-шпинель-пироповых перидотитах массива Миндяк

Компонент	ПЕ1504	ПЕ1505	ПЕ1506	ПЕ1507	ПЕ1508	ПЕ1511	ПЕ1512	Мк232
SiO ₂	43.10	39.80	45.24	45.73	44.20	46.13	46.51	44.36
TiO ₂	0.33	0.32	0.35	0.32	0.36	0.34	0.38	0.22
Al_2O_3	8.19	6.29	9.27	8.67	9.08	8.69	9.57	8.96
Fe ₂ O ₃	3.78	4.59	3.00	3.58	3.27	4.18	3.04	4.67
FeO	3.50	2.10	4.20	3.90	4.50	3.50	4.20	2.50
MnO	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.15
MgO	26.80	29.29	25.46	25.26	25.88	25.43	24.21	22.52
CaO	9.44	8.48	9.29	9.25	9.47	8.72	9.23	12.93
Na ₂ O	0.49	0.11	0.72	0.73	0.62	0.61	0.73	0.49
K ₂ O	0.01	0	0.01	0.01	0.01	0.01	0.01	0
P_2O_5	0.03	0.04	0.03	0.02	0.03	0.01	0.02	0.01
П.п.п.	4.60	8.70	2.40	2.40	2.70	2.30	1.90	3.10
Сумма	100.83	100.34	100.58	100.46	100.46	100.45	100.41	100.14
Fe/(Mg+Fe)	0.12	0.11	0.13	0.13	0.13	0.14	0.14	0.14
Rb	3.00	2.70	3.30	2.30	3.20	3.50	2.20	2.84
Sr	32.70	21.70	48.40	43.00	35.60	35.70	45.80	34.00

Примечание. Анализы выполнены рентгенфлюоресцентным методом на СРМ-25 и XRF 1800 в ЦКП "Геоаналитик" ИГГ УрО РАН (г. Екатеринбург), аналитики: Н.П. Горбунова, Л.А. Татаринова, Г.С. Неупокоева.

натовых пироксенитов и базитов из орогенных лерцолитовых комплексов мира, в которых CaO/Al₂O₃ равно 0.8-0.9, соответствуя соотношению этих элементов в хондрите [2]. По химическому и минеральному составу изучаемым породам наиболее близки шпинелевые и шпинель-гранатовые вебстериты массива Ронда [7], имеющие CaO/Al₂O₃ также больше 1.0. От лерцолитов уральских комплексов (массивы Крака и Нурали) изучаемые породы отличаются значительно большим содержанием Al₂O₃ и CaO, и меньшим содержанием MgO. Происхождение этих пород и их связь с лерцолитовыми массивами Южного Урала остаются дискуссионными. Для решения этого вопроса нами были изучены составы хромшпинелидов, которые являются чуткими индикаторами генезиса ультрамафитов [5].

В пироповых вебстеритах хромшпинелид, как правило, образует включения внутри зерен граната либо в виде мелких округлых зерен, либо в виде более крупных агрегатов неправильной "амебовидной" формы, размером от 0.1 до 2.0 мм (рис. 1). Цвет хромшпинели под микроскопом в проходящем свете красно-коричневый, винножелтый, зеленовато-желтый. Зеленовато-желтая хромшпинель встречается редко и содержит силикатные включения. Красновато-коричневая и винно-желтая хромшпинель часто замещаются по краям черным непрозрачным хромшпинелидом. На границе между включениями хромшпинелида и пиропа и между пиропом и оливином развиваются реакционные зоны. Мощность таких зон обычно не превышает 100 мкм. Реакционные зоны состоят из орто- и клинопироксена, амфибола и шпинели, которые образуют сложные стебельчатые и червеобразные срастания (рис. 2). По составу реакционная шпинель относится к высокоглиноземистой железомагнезиальной шпинели с низким содержанием Cr₂O₃ (<1%) и NiO (<0.3%) и ничтожно малой концентрацией TiO₂ и V₂O₃. В дальнейшем ее состав мы будем использовать только для сравнения.

Химический состав хромшпинелидов из включений в пиропах приведен в табл. 2. По химическому составу хромшпинелиды соответствуют пикотиту по классификации Н.В. Павлова [1]. Хромшпинель испытывает заметные вариации по содержанию главных конституционных компонентов MgO, FeO, Al₂O₃ и Cr₂O₃ и практически не содержит или обладает крайне низкой концентрацией таких элементов, как Ті, V, Mn, Zn. По соотношению Cr_2O_3 и Al_2O_3 все изученные хромшпинели можно статистически разделить на две группы, которые могут присутствовать и в одной пробе. К одной группе принадлежат несколько более хромистые шпинели (Cr₂O₃ = 11.7–16.2 мас. %, Al₂O₃ = 50.4–54.8 мас. %), а к другой – более глиноземистые ($Cr_2O_3 = 2.9-11.8$ мас. %, Al₂O₃ = 56.3–63.8 мас. %). В одной из проб пиро-

ЕЖЕГОДНИК-2013, Тр. ИГГ УрО РАН, вып. 161, 2014

Prp
Prp

Opx
Spl

Opx
Opx

Spl
Prp

Spl
1 MM

Рис. 1. Микрофотография пиропового вебстерита ПЕ-1512.

В центре крупное зерно пиропа (Prp) с включением высокоглиноземистой шпинели (Spl). Орх – ортопироксен. Николи скрещенные.

Рис. 2. Реакционная зона между шпинелью (Spl) и пиропом (Prp), сложенная симплектитом ортопироксена, клинопироксена, амфибола и червеобразной шпинели.

Изображение в характеристических лучах алюминия получено на рентгеновском микроанализаторе Cameca SX-100, ЦКП "Геоаналитик", аналитик Д.А. Замятин.

Компонент	ПЕ1504		ПЕ1505	ПЕ1506		ПЕ1507		ПЕ1508	ПЕ1509-2	
	1	2	3	4	5	6	7	8	9	10
TiO ₂	0.12	0.10	0.04	0.01	0.01	0.05	0.04	0.06	0.06	0.07
Al_2O_3	60.34	50.39	54.26	61.48	57.42	59.55	53.74	62.32	54.29	56.48
Cr_2O_3	6.27	14.86	12.27	5.44	8.95	6.96	12.75	3.62	12.10	9.06
V_2O_3	0.15	0.10	0.16	0.16	0.10	0.09	0.10	0.10	0.14	0.14
FeO*	11.84	16.96	14.97	12.37	15.14	13.75	16.65	13.07	14.42	14.62
MnO	0.02	0.15	0.09	0.00	0.17	0.06	0.16	0.02	0.08	0.06
MgO	20.29	16.22	16.96	19.65	17.88	18.43	15.72	19.65	17.94	18.98
NiO	0.57	0.30	0.25	0.60	0.42	0.47	0.32	0.51	0.30	0.35
ZnO	0.23	0.17	0.19	0.17	0.27	0.22	0.21	0.12	0.21	0.18
Сумма	99.83	99.25	99.19	99.88	100.36	99.58	99.69	99.47	99.54	99.94
$Fe^{2+}/(Mg+Fe^{2+})$	0.21	0.33	0.31	0.24	0.29	0.27	0.36	0.24	0.28	0.25
Cr/(Cr+Al)	0.07	0.17	0.13	0.06	0.09	0.07	0.14	0.04	0.13	0.10
Компонент	ПЕ1511	ПЕ1512				ПЕ990	ПЕ1005	MK235		
	11	12	13	14	15	16	17	18	19	20
TiO ₂	0.14	0.12	0.08	0.09	0.13	0.04	0.03	0.09	0.09	0.08
Al_2O_3	53.49	53.15	61.41	58.51	57.43	46.77	54.15	52.02	55.71	56.04
Cr_2O_3	13.51	13.92	4.49	7.95	8.89	19.05	12.59	14.1	10.70	10.87
V_2O_3	0.17	0.19	0.07	0.13	0.19	0.11	0.06	0.11	0.03	0.09
FeO*	14.30	12.87	12.81	12.34	13.35	15.32	13.28	13.76	12.45	12.72
MnO	0.08	0.11	0.05	0.12	0.13	0.11	0.08	0.07	0.16	0.12
MgO	17.72	17.93	19.54	19.35	18.88	17.75	19.07	18.3	19.44	19.74
NiO	0.50	0.50	0.55	0.46	0.53	0.32	0.34	0.27	0.38	0.30
ZnO	0.24	0.21	0.22	0.20	0.22	0.22	0.13	0.24	0.12	0.12
Сумма	100.15	99.00	99.22	99.15	99.75	99.69	99.73	98.96	99.08	100.08
$Fe^{2+}/(Mg+Fe^{2+})$	0.29	0.27	0.24	0.24	0.25	0.27	0.24	0.26	0.23	0.23
Cr/(Cr+Al)	0.14	0.15	0.05	0.08	0.09	0.21	0.13	0.15	0.11	0.12

Таблица 2. Химический состав хромшпинелидов (мас. %)

Примечание. 1–15 – пироповые вебстериты, 16–17 – лерцолиты массива Узянский Крака, 18–20 – лерцолитовые фрагменты в брекчиях массива Миндяк. FeO* – все железо в виде FeO. Анализы выполнены на рентгеновском микроанализаторе Cameca SX-100 в ЦКП "Геоаналитик" ИГГ УрО РАН (г. Екатеринбург), аналитик Д.А. Замятин.

повых вебстеритов (Мк232, см. табл. 1), характеризующейся более высоким содержанием СаО по сравнению с другими пробами, был обнаружен хромшпинелид с более высоким содержанием Cr₂O₃ 17.7–26.4 мас. % и более низким Al₂O₃ 40.5-49.7 мас. %. Несмотря на определенную разницу в составах, все изученные хромшпинелиды принадлежат одному ряду, характерному для мантийных перидотитов и определяемому Al-Cr-изоморфизмом хромшпинели (рис. 3а). Так, на диаграмме трехвалентных катионов Al–Cr–Fe⁺³ (рис. 4) хромшпинелиды из пироповых вебстеритов лежат в поле составов хромшпинелидов из перидотитов и пироксенитов орогенных лерцолитовых комплексов Средиземноморья и Альп [6, 8–10], лерцолитов массива Узянский Крака и ксенолитов лерцолитов из родингитовых брекчий массива Миндяк. В сравнении с составами хромшпинелидов из лерцолитов других массивов Южного Урала (Северный Крака, Средний Крака, Южный Крака и Нуралинский [4]) шпинелиды пироповых вебстеритов являются более глиноземистыми. На диаграмме Cr/(Cr+Al) – Fe⁺²/(Fe⁺² + Mg) (см. рис. 3в) изучаемые хромшпинелиды характеризуются меньшей

хромистостью по сравнению с уральскими и Средиземноморскими перидотитами.

Следует отметить, что важной особенностью состава хромшпинелидов из пироповых вебстеритов массива Миндяк является высокое содержание в них NiO (от 0.3 до 0.8%). Ассоциированный с хромшпинелидом оливин также характеризуется высоким средним содержаниеми NiO - около 0.5%. Это указывает на интересную геохимическую особенность минералов из изучаемых гранатовых пород по сравнению с хромшпинелидами из перидотитов и пироксенитов массивов Ронда, Бени Бушера, Ланцо [6, 8, 9], которые характеризуются существенно меньшим содержанием никеля в аналогичных минералах. Содержание никеля и глинозема в хромшпинелидах связано прямой зависимостью. Если предположить, что более глиноземистый хромшпинелид является первичным, свойственным примитивным перидотитам, то при отсутствии серы они должны быть и более никелистыми. Приняв это допущение, можно утверждать, что состав хромшпинелидов из пироповых вебстеритов массива Миндяк может характеризовать наименее деплетированное мантийное вещество (см. рис. 3б).

Таким образом, хромшпинелиды из оливиншпинель-пироповых вебстеритов Миндякского массива соответствуют шпинелидам мантийных перидотитов, вариации состава которых определяются Cr-Al изоморфизмом и связаны со степенью деплетированности пород. По соотношению хрома и алюминия они близки к шпинелидами из орогенных лерцолитовых комплексов Средиземноморья – Ронда, Бени Бушера [8–10], Альп – Ланцо [6] и др., а также к хромшпинелидам из лерцолитовых массивов Южного Урала: Крака и Нуралинский [4], отличаясь от них несколько меньшим отношением Cr/(Cr + Al), что может свидетельствовать о более примитивном характере уральских гранатовых пород. Важной геохимической особенностью пироповых перидотитов Миндякского массива является высокое содержание в хромшпинелидах и в оливинах никеля и его четкая положительная корреляция с содержанием алюминия, что может свидетельствовать об отсутствии в системе серы и о первичном, примитивном характере перидотитов.

Автор благодарит Д.А. Замятина, сотрудника ЦКП "Геоаналитик" лаборатории ФХМИ ИГГ УрО

ЕЖЕГОДНИК-2013, Тр. ИГГ УрО РАН, вып. 161, 2014

Рис. 3. Диаграммы состава хромшпинелидов.

1–4 – пироповые вебстериты массива Миндяк: 1–3 – включения в гранате с содержанием глинозема, мас. %: $1 - Al_2O_3 = 56.3 - 63.8$, $2 - Al_2O_3 = 50.4 - 54.8$, $3 - Al_2O_3 = 40.5 - 49.7$; 4 - червеобразные вростоки в реакционной зоне на контакте пиропа с оливином; 5 - перидотиты и пироксениты массивов Ронда, Бени Бушера, Ланцо [6, 8–10]; 6 - лерцолиты массива Узянский Крака; 7 - лерцолитовые фрагменты из брекчий массива Миндяк; 8 - лерцолиты массивов Крака, Нуралинский [4]. A - Д - линии трендов полей: A - пироповые вебстериты; Б - перидотиты и пироксениты массивов Ронда, Бени Бушера, Ланцо [6, 8–10]; B - лерцолиты массива Миндяк; Д - лерцолиты массивов Крака и Нуралинский [4].

Рис 4. Диаграмма Al–Cr–Fe⁺³ для хромшпинелидов.

Фигуративные точки соответствуют условным обозначениям рис. 3; I–IV – поля составов хромшпинелидов: I – лерцолиты массивов Крака и Нурали [4]; II – перидотиты и пироксениты массивов Ронда, Бени Бушера, Ланцо [6, 8–10]; III – лерцолиты массива Узянский Крака; IV – лерцолиты из брекчий массива Миндяк.

РАН, за профессионально выполненные аналитические исследования.

Работа выполнена при финансовой поддержке РФФИ, проекты № 13-05-00597; 13-05-96031 р_урал_а (РФФИ-Урал – правительство Свердловской области), 12-05-00112-а, а также Совместного проекта УрО-СО-ДВО РАН № 12-С-5-1004

СПИСОК ЛИТЕРАТУРЫ

- Павлов Н.В. Химический состав хромшпинелидов в связи с петрографическим составом пород ультраосновных интрузивов // Тр. Ин-та геол. наук. АН СССР. Сер. рудн. месторожд. 1949. Вып. 103. С. 3–88.
- 2. Пушкарёв Е.В., Рязанцев А.В., Третьяков А.А. и др. Гранатовые ультрамафиты и мафиты в зоне Главного уральского разлома на Южном Урале: петрология, возраст и проблема образования // Литосфера. 2010. № 5. С. 102–133.
- Савельев А.А. Бибикова Е.В., Савельева Г.Н. и др. Гранатовые пироксениты массива Миндяк на Южном Урале: обстановка и возраст формирования // Бюл. МОИП. Отд. геол. 2001. Т. 76, Вып. 1. С. 22–29.
- 4. Чащухин И.С., Вотяков С.Л., Щапова Ю.В. Крис-

таллохимия хромшпинели и окситермобарометрия ультрамафитов складчатых областей. Екатеринбург: ИГГ УрО РАН, 2007. 310 с.

- Barnes S.J., Roeder P.L. The range of spinel compositions in terrestrial mafic and ultramafic rocks // J. Petrol. 2001. V. 42, № 12. P. 2279–2302.
- Boudier F. Structure and petrology of the Lanzo peridotite massif (Piedmont Alps) // Geol. Soc. Am. Bul. 1978. V. 89. P. 1574–91.
- Garrido C.J., Bodinier J-L. Diversityof mafic rocks in the Ronda peridotite: evidence for pervasive melt-rock reaction during heating of subcontinental lithosphere byupwelling asthenosphere // J. Petrol. 1999. V. 40, № 5. P. 729–754.
- 8. *Gysi A.P., Jagoutz O., Schmidt M., Targuisti K.* Petrogenesis of Pyroxenites and Melt Infiltrations in the Ultramafic Complex of Beni Bousera, Northern Morocco // J. Petrol. 2011. V. 52, № 9. P. 1679–1735.
- Lenaz D., De Min A., Garuti G., Zaccarini F., Princivalle F. Crystal chemistry of Cr-spinels from the lherzolite mantle peridotite of Ronda // Am. Mineralog. 2010. V. 95. P. 1323–1328.
- Obata M. The Ronda peridotite: Garnet-, spinel- and plagioclase-lherzolite facies and P-T trajectories of a high-temperature mantle intrusion // J. Petrol. 1980. V. 21, № 3. P. 533–572.