МИНЕРАЛОГИЯ

ВОЛЛАСТОНИТОВЫЕ СКАРНЫ И СОПУТСТВУЮЩАЯ Си–Рb–Bi-МИНЕРАЛИЗАЦИЯ КУРМАНСКОГО КАРЬЕРА

© 2014 г. С. В. Прибавкин, М. Д. Замятина, Д. А. Замятин, Т. Я. Гуляева, В. И. Квачёв*

ВВЕДЕНИЕ

Образование богатых волластонитом пород связано с зонами контактового метаморфизма известняков с силикатными магматическими породами (скарнами). Они встречаются также в зонах контактовых роговиков (скарноидах), реже – в регионально-метаморфизованных породах, а также в связи с комплексами щелочно-ультраосновных пород и карбонатитов.

Волластонитовые скарны встречаются достаточно редко и представляют не только научный, но и практический интерес в связи с возрастающими потребностями промышленности в волластонитовом сырье [5]. На Урале находки волластонита известны в скарнах Турьинских рудников, Белореченском месторождении на Северном Урале, Магнитогорском и Гумбейском рудных полях на Южном Урале [2, 3, 6]. Однако промышленные запасы волластонита оценены только для скарнов Турьинских рудников. В связи с этим выявление новых рудопроявлений волластонитсодержащих пород и их минералогическое исследование имеют важное значение для прогнозирования и оценки перспектив Уральского региона на данный вид минерального сырья.

ОБЪЕКТ ИССЛЕДОВАНИЯ

Рассматриваемое в данной работе рудопроявление волластонита было выявлено в камнещебеночном карьере Курманского месторождения гранита (56°46'1" С, 61°17'48" В), расположенного в 3 км северо-западнее с. Мезенское, на восточной окраине с. Курманка Белоярского района Свердловской области [1]. Рудопроявление представляет собой крупный ксенолит мраморов, захваченный биотитовыми гранитами. В контакте с ксенолитом породы испытали метасоматические преобразования с формированием эпидот-плагиоклазкварцевых эндоскарнов и гранат-пироксеновых, гранат-волластонитовых скарнов с сопутствующей полиметаллической минерализацией.

Нами изучены образцы скарнов, обладающие полосчатой и брекчиевой текстурой. Первые характеризуются чередованием полос светло-бурого пироксен-гранатового скарна с полосами волластонитового скарна, сложенными крупными сноповидными выделениями белоснежного волластонита, достигающими 10 см по удлинению и ориентированными вдоль полосчатости (рис. 1а). Содержание волластонита в них превышает 80%. Здесь же

Рис. 1. Фотографии образцов пироксен-гранат-волластонитовых скарнов полосчатой (а) и брекчиевой (б) текстуры. а – в белом прослое волластонитового скарна присутствуют крупные коричневые метакристаллы фторсодержащего везувиана, б – ксенолиты сложены волластонит-кварц-кальцитовыми породами с небольшой долей пироксена и граната.

^{*}Музей минералогии, камнерезного и ювелирного искусства г. Заречный.

Рис. 2. Микрофотографии структур ксенолитов известково-силикатных пород гранат-кварц-кальцитового (а) и волластонитового (б) состава, цементируемых пироксен-гранатовым скарном.

Полиметаллическая сульфидная минерализация скарнов представлена минералами Pb, Cu, Bi (в) и недиагностированной протофазой, замещенной агрегатом сульфидов и оксидов висмута (г). Са – кальцит, Gr – гранат, Wo – волластонит, Gl – галенит, Wit – виттихенит, Aik – айкинит, Сср – халькопирит, Tn – цинкистый Bi-теннантит, Cer – церрусит.

встречаются тонкие прослои или гнезда преимущественно кварц-кальцитового состава и редкие метакристаллы везувиана. Образцы второй группы обладают брекчиевыми текстурами (см. рис. 1б). Они сложены ксенолитами известково-силикатных пород, в разной степени замещенными волластонитом и сцементированными светло-коричневым мелкозернистым пироксен-гранатовым скарном (рис. 2a, б). В последнем в акцессорном количестве выявлены везувиан и апатит. Эпидот развивается по трещинам, секущим брекчии, представляя собой типичный продукт ретроградных изменений.

Химический состав граната, пироксена, везувиана и волластонита приведен в табл. 1. Кристаллы волластонита имеют белоснежную окраску, сильно варьируют по удлинению и характеризуются низким содержанием микропримесей: FeO_{общ} + MnO + + MgO менее 0.5 мас. %. По данным рентгеноструктурного анализа, выполненного на рентгеновском дифрактометре XRD-7000, минерал обладает триклинной сингонией, соответствуя политипу 1А. Параметры элементарной ячейки: a = 7.756 Å, b = 7.182 Å, c = 6.748 Å, $\alpha = 85.65^{\circ}$, $\beta = 93.54^{\circ}$, $\gamma = 99.65^{\circ}$, V = 369.0 Å³.

Среди граната выделено три цветовые разновидности, занимающие определенную позицию. Наиболее распространенный гранат, слагающий основную ткань пироксен-гранатового скарна, обладает светло-коричневой окраской. Его состав соответствует андрадит-гроссуляру (Adr₄₅), а размерность зерен не превышает 0.5 мм. Второй по распространенности гранат характеризуется светло-желтой окраской и пониженной долей андрадитового минала (Adr₁₂₋₂₅) Он формирует как самостоятельные кристаллы до 1 мм в поперечнике в обоих типах образцов, так и каймы вокруг светло-коричневого гра-

ЕЖЕГОДНИК-2013, Тр. ИГГ УрО РАН, вып. 161, 2014

	513		514	513			514					513	3 514			
Компонент	Клинопироксен						Гр	Гранат				Везувиан		Волластонит		
	1	2	3	4	5	6	7	8	9	10	11	12	13	13	14	15
SiO ₂	53.98	54.07	55.28	37.42	37.18	38.70	37.19	38.12	39.66	38.80	39.62	36.33	35.51	50.98	51.01	51.06
TiO ₂	0.02	0.00	0.02	0.60	0.66	0.03	0.50	0.27	0.04	0.00	0.00	2.79	2.60	0.00	0.00	0.01
Al_2O_3	0.04	0.07	0.04	12.18	11.94	18.81	11.99	16.19	19.33	19.56	21.77	14.73	14.05	0.03	0.03	0.02
FeO	3.07	2.88	0.83	13.83	13.69	4.65	13.77	7.92	4.25	3.80	1.09	3.40	4.13	0.05	0.02	0.05
MnO	0.66	1.41	0.15	0.63	0.52	0.59	0.53	0.58	0.56	0.78	0.25	0.09	0.18	0.25	0.35	0.31
MgO	15.95	15.62	18.01	0.17	0.18	0.02	0.10	0.03	0.00	0.02	0.00	2.36	2.31	0.01	0.03	0.02
CaO	25.49	25.64	25.56	34.81	34.31	36.11	34.70	35.57	36.25	36.42	37.44	35.60	35.24	47.94	48.02	47.67
Na ₂ O	0.03	0.06	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.07	0.03	0.05	0.00
F												1.67	1.97			
Cl												0.32	0.30			
$O = (F, Cl)_2$												-0.79	-0.91			
Сумма	99.24	99.75	99.95	99.66	98.50	98.95	98.78	98.70	100.10	99.40	100.20	96.55	95.45	99.32	99.52	99.14
			Криста	аллохи	мичес	кие ко	эффиц	иенты	(расчет	г на 6,	8, 50, 2	катион	a)			
Na	0.002	0.004	0.004									0.048	0.068	0.001	0.002	0.000
Ca	1.011	1.014	0.992	2.929	2.921	2.976	2.945	2.969	2.950	2.980	3.013	18.907	19.019	1.000	1.000	0.997
Mg	0.880	0.859	0.972	0.020	0.021	0.002	0.012	0.003	0.000	0.002	0.020	1.744	1.735	0.000	0.001	0.001
Mn	0.021	0.044	0.005	0.042	0.035	0.038	0.036	0.038	0.036	0.050	0.016	0.038	0.077	0.004	0.006	0.005
Fe ²⁺	0.086	0.080	0.023	0.000	0.016	0.000	0.000	0.000	0.028	0.000	0.000	1.268	1.565	0.001	0.000	0.001
Fe ³⁺				0.908	0.894	0.299	0.912	0.516	0.241	0.243	0.068					
Ti	0.001	0.000	0.001	0.035	0.039	0.002	0.030	0.016	0.002	0.000	0.000	1.383	1.310	0.000	0.000	0.000
Al	0.002	0.003	0.002	1.127	1.118	1.705	1.119	1.487	1.730	1.761	1.927	8.605	8.341	0.001	0.001	0.000
Si	1.998	1.995	2.002	2.938	2.955	2.977	2.946	2.970	3.012	2.963	2.976	18.008	17.886	0.993	0.991	0.996
F												2.618	3.138			
Cl												0.269	0.256			
					. 1	Минал	ьный (состав	граната	a, %						
Prp				0.7	0.7	0.1	0.4	0.1	0.0	0.1	0.0					
Alm				0.0	0.5	0.0	0.0	0.0	0.9	0.0	0.0					
Sps				1.4	1.2	1.3	1.2	1.3	1.2	1.7	0.54					
Grs				51.8	52.2	83.8	52.2	72.7	85.8	86.3	96.1					
Adr				44.9	44.1	14.8	45.2	25.4	12.0	12.0	3.4					
Scho				1.2	1.3	0.1	1.0	0.5	0.1	0.0	0.0					

Таблица. 1. Химический состав силикатов (мас. %)

Примечание. 513 – пироксен-гранатовый скарн, 514 – гранат-волластонитовый скарн; окраска граната: 4–5, 7 – светло-коричневая, 6, 8–10 – светло-желтая, 11 – молочно-белая; Prp – пироп, Alm – альмандин, Sps – спессартин, Grs – гроссуляр, Adr – андрадит, Scho – шорломит. Анализы выполнены на рентгеновском микроанализаторе Cameca SX-100 в ИГГ УрО РАН.

ната. Гранат молочно-белого цвета отмечен в волластонитовом скарне в прослоях и линзах кварцкальцитового состава, где образует хорошо ограненные кристаллы размером менее 1 мм. Его состав соответствует почти чистому гроссуляру (Adr₃).

Пироксен скарнов отвечает диопсиду, содержащему 3–10% геденбергитового минала. При этом пироксен в волластонитовых прослоях обладает минимальным содержанием железа. Общее количество пироксена в скарнах не превышает 15%.

Везувиан в пироксен-гранатовом скарне образует субидиоморфные кристаллы, ассоциирующие с гроссуляром Adr_{12-25} . В шлифах их размер не превышает 0.5 мм, а окраска варьирует от бледножелтой до светло-коричневой. В составе везувиана выявлена примесь TiO₂ 2.5–3.5 мас. % и повышенные концентрации F и Cl (2.0 и 0.3 мас. % соответственно). Аналогичный везувиан развит в зоне крупнокристаллического волластонита, где образует крупные изометричные метакристаллы, окрашенные в темно-коричневый цвет и достигающие 5 мм в диаметре (см. рис. 1а). Параметры элементарной ячейки, рассчитанные по четырем рефлексам (547, 707, 1015, 618), составляют: a = b = 15.611 Å, c = 11.844 Å, V = 2886.5 Å³.

Апатит в пироксен-гранатовом скарне формирует редкие скопления призматических кристаллов размером менее 0.3 мм по удлинению и идентифицируется как F-апатит:

 $(Ca_{4.95}Ce_{0.01})_{4.96}[(P_{2.99}Si_{0.02}S_{0.01})_{3.02}O_4]_3(F_{0.82}OH_{0.18}).$

Сульфидная минерализация выявлена в образце брекчированного скарна, бедного волластонитом. Она формирует редкие гнезда до 15 мм, сложенные сульфидами и сульфосолями Pb, Bi, Cu, среди которых преобладает галенит (см. рис. 2в; табл. 2). Халькопирит, виттихенит, айкинит, цинкистые **Bi-теннантит** – **As-аннивит встречаются ре**же и локализуются на контакте галенита с силика-

Элемент	1	2	3	4	5	6	7	8			
Cu	0.17	32.32	37.08	20.32	11.73	36.91	35.08	64.91			
Ag	0.18	0.05	0.49	0.11	0.05	Не опр.	0.36	1.35			
Fe	0.00	28.88	0.09	0.99	0.01	0.55	0.56	Не опр.			
Zn	0.00	0.06	0.06	0.00	0.00	6.98	5.98	Не опр.			
Pb	85.93	0.23	0.00	0.00	35.51	Не опр.	0.00	Не опр.			
As	0.00	0.00	0.35	0.46	0.00	9.13	7.13	Не опр.			
Sb	0.00	0.00	0.10	0.05	0.05	2.87	2.75	Не опр.			
Bi	0.00	0.17	41.77	57.49	35.99	18.53	23.20	Не опр.			
S	13.46	34.84	19.76	19.93	17.30	25.04	23.77	33.74			
Сумма	99.73	96.55	99.71	99.35	100.65	100.00	98.83	100.00			
Кристаллохимические формулы											
1	Галенит: Рb _{0.99} S _{1.00}										
2	Халькопирит: Cu _{0.96} Fe _{0.98} S _{2.05}										
3	Виттихенит: (Cu _{2.89} Ag _{0.02} Zn _{0.01} Fe _{0.01}) _{2.93} (Bi _{0.99} As _{0.02}) _{1.01} S _{3.05}										
4	Эмплектит: (Cu _{1.03} Fe _{0.06}) _{1.09} (Bi _{0.89} As _{0.02}) _{0.91} S _{2.00}										
5	Айкинит: Cu _{1.04} Pb _{0.96} Bi _{0.97} S _{3.03}										
6	Теннантит: Cu _{9.84} (Zn _{1.81} Fe _{0.17}) _{1.98} (As _{2.06} Bi _{1.50} Sb _{0.40}) _{3.96} S _{13.23}										
7	Аннивит: (Cu _{9.84} Ag _{0.06}) _{9.90} (Zn _{1.63} Fe _{0.18}) _{1.81} (Bi _{1.98} As _{1.70} Sb _{0.40}) _{4.08} S _{13.20}										
8	Ковелин: (Cu _{0.98} Ag _{0.01}) _{0.99} S _{1.01}										

Таблица 2. Химический состав сульфидов (мас. %)

Примечание. Анализы выполнены на рентгеновском микроанализаторе Cameca SX-100 в ИГГ УрО РАН. Не опр. - не определялось.

тами. Здесь же выявлены призматические кристаллы недиагностированной протофазы, замещенные галенит-халькопиритовым симплектитом в срастании с эмплектитом, самородным висмутом, бисмитом, серебросодержащим ковелином и оксидносиликатными фазами висмута (см. рис. 2г).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В формировании известковых скарнов Курманского карьера выявляются несколько этапов, соответствующих Р-Т-условиям следующих минеральных фаций: волластонитовой, пироксен-гранатовой, эпидотовой. Параметры образования волластонитовой фации можно оценить по экспериментальным данным, приведенным в работе В.А. Жарикова [4], показывающим, что нижняя граница скарнообразования волластонитовой фации соответствует кривой устойчивости волластонита: 600–700°С при давлении менее 4 кбар, а верхняя граница определяется линией солидуса гранодиорита.

Фация пироксен-гранатовых скарнов по времени образования следует за волластонитовой, что подтверждается наличием обломков волластонитового скарна, цементируемых скарнами пироксенгранатового состава. В ее составе широко развиты андрадит-гроссуляровый гранат Adr_{45} и диопсид Hd₉. Низкожелезистый гроссуляр Adr_{3-45} , диопсид Hd₃ и ассоциируемый с ними везувиан накладываются на ранние парагенезисы пироксенгранатовых и волластонитовых скарнов. Их формирование связано с высокой долей воды и активностью фтора в минералообразующем флюиде. Источником последнего, вероятно, является магматогенный флюид, отделяющийся от интрузивного тела.

Парагенезисы эпидотовой минеральной фации в изученных образцах выражены в наличии зерен эпидота, кварца и кальцита, развивающихся по трещинам в более высокотемпературных фациях скарнов: волластонитовой и пироксен-гранатовой.

Сосуществующие составы клинопироксена и граната скарнов могут служить индикатором кислотности послемагматических растворов, определяющих характер оруденения [4]. В связи с этим можно констатировать, что наличие ассоциации гроссулярового граната и низкожелезистого пироксена характерно для скарнов фации пониженной кислотности. Несмотря на общий безрудный характер скарнов, с повышением кислотности флюидов на заключительных этапах скарнообразования связано формирование редких гнезд полиметаллической минерализации, сопровождающейся окварцеванием. Условия формирования такой минерализации соответствовали температуре 180-300°С и давлению менее 4 кбар, что устанавливается по наличию высоковисмутового, цинкистого теннантита и виттихенита [7, 8]. Высокое содержание в теннантите цинка и низкое содержание железа предполагают высокий окислительный потенциал гидротермальной системы. К поздней гидротермальной стадии мы относим появление в волластонитовых скарнах гнезд цеолитов, сложенных по данным микрозондового анализа Сагейландитом:

 $(Ca_{1.53}K_{0.81}Ba_{0.14}Na_{0.04})_{2.53}Al_3(Al_{0.56}Si_{0.53})_{1.08}Si_{13}O_{36} \times 12(H_2O).$

Надо заметить, что наличие сульфидной минерализации в скарнах, значимую роль в которой играют минералы висмута, и широкое развитие в пределах массива и его обрамления сульфидно-кварцевых жил с висмутином (Баженовское W–Mo–Bi-месторождение) позволяют предполагать общий источник рудной минерализации скарнов и кварцевых жил, связанный с единым магматическим источником.

выводы

Изучение образцов скарнов выявило широкое развитие в их составе волластонита, который формирует слои небольшой мощности, содержащие более 80% полезного минерала.

Условия формирования волластонитовых скарнов соответствовали температуре 600–700°С и давлению 3.5–4.5 кбар. Скарны пироксен-гранатового состава формировались следом за волластонитовыми в диапазоне 600–500°С. Более низкие по параметрам фации, такие как пироксен-эпидотовая, в изученных образцах практически отсутствуют. Высокая активность фтора в скарнообразующем флюиде определила его вхождение в структуры везувиана и апатита.

Установлено наложение на ранние высокотемпературные скарны сульфидной гидротермальной минерализации, представленной полиметаллической ассоциацией минералов Pb, Cu и Bi. Работа выполнена при финансовой поддержке РФФИ (гранты № 12-05-00132а, 12-05-00109а, 13-05-00597а).

СПИСОК ЛИТЕРАТУРЫ

- Квачев В.И., Попов М.П. Волластонит из скарнов Курманского карьера // Уральская минералогическая школа-2004. Екатеринбург: УГГУ, 2004. С. 87.
- Коржинский Д.С. Петрология Турьинских скарновых месторождений меди // Тр. ИГН. 1948. Вып. 68. 148 с. (Серия рудных месторождений. № 10).
- Железорудные формации Среднего и Южного Урала / Под ред. А.Л. Яншина. М.: Наука, 1989. 251 с.
- Метасоматизм и метасоматические породы / Под ред. В.А. Жарикова, В.Л. Русинова. М.: Науч. мир, 1998. 492 с.
- 5. Обзор рынка волластонита в СНГ (2013 г.). М., 2013. 110 с.
- Скарновые месторождения / Под ред. Д.С. Коржинского. М.: Наука, 1985. 248 с.
- Spiridonov E., Maleev M., Kovachev V., Kulikova I., Nazmova G., Filimonov S. Minerals of fahlore group: indicators of ore genesis // Bulgarian geological society, 80-th anniversary. Proceedings of the jubilee International conference. Sofia, 2005. P. 79–82.
- Wang N. The Cu-Bi-S system: results from low-temperature experiments // Mineralogic. Mag. 1994. V. 58. P. 201–204.