ГЕОХРОНОЛОГИЯ

ПЕРВЫЕ РЕЗУЛЬТАТЫ U–Рb-ДАТИРОВАНИЯ ЦИРКОНОВ ИЗ КСЕНОЛИТА МЕТАПЕЛИТОВ В ГРАНИТОИДАХ ВЕРХИСЕТСКОГО МАССИВА (СРЕДНИЙ УРАЛ)

© 2014 г. Е. А. Зинькова, С. В. Прибавкин

Верхисетский массив представляет собой крупнейшее на Урале батолитообразное тело, расположенное вблизи г. Екатеринбурга в пределах палеоокраинно-континентальной области Среднего Урала (рис. 1). Преобладающая его часть сложена породами умеренно кислого состава, формирующими сливающиеся и наложенные друг на друга плутоны габбро-диоритового, тоналит-трондьемитового, тоналит-гранодиоритового и адамеллит-гранитного состава. Возраст пород варьирует от 370 до 290 млн лет, характеризуя массив как центр длительной эндогенной активности [9–11].

Вмещающие массив толщи представлены островодужными вулканогенно-осадочными образованиями раннего и среднего девона, сложенными преимущественно основными эффузивами с подчиненными им туфами, преобразованными в эпидот-актинолитхлоритовые сланцы; реже – углисто-кремнистыми сланцами. известняками. В контакте с массивом эти породы превращены в роговики, амфиболиты, гнейсы, графит-кварцево-слюдистые сланцы, мраморы. Они же встречаются и в виде крупных блоковксенолитов внутри гранитного массива и интерпретируются как провесы кровли [1]. Однако изучение состава и параметров метаморфизма ксеноблоков высокоглиноземистых гнейсов позволило высказать предположение об их принадлежности к глубокометаморфизованным островодужным комплексам, подобным Салдинскому и Сысертскому, расположенным в описываемой области Среднего Урала [4].

В работе представлены результаты U–Pb (SHRIMP-II)-датирования циркона из ксеноблока высокоглиноземистых гнейсов, выполненные в Центре изотопных исследований ВСЕГЕИ по стандартной методике [13, 14]. Целью данной работы является определение возраста метаморфических событий и их сопоставление с этапами гранитоидного магматизма в окраинно-континентальной области Среднего Урала.

Высокоглиноземистые гнейсы вскрыты искусственными выработками на площади 70 × 150 м, представляющими собой так называемую Верхоловскую копь, входящую в состав Евгение-Максимилиановских минеральных копей [3] на территории Историко-ландшафтного парка "Истоки Исети".

Гнейсы представлены породами с неравномерно-зернистой, неравномерно-полосчатой и гнейсовидной текстурой, обусловленной планпараллельной ориентировкой чешуек биотита и неоднородным количественным соотношением светлых и темных минералов. Структура пород порфиробластовая, связанная с наличием крупных кристаллов граната, заключенного в тонкозернистую лепидогранобластовую основную ткань. Главными породообразующими минералами гнейсов, помимо отмеченного выше граната, являются биотит, силлиманит, кварц и основной плагиоклаз. Среди второстепенных минералов отмечаются ставролит, мусковит, кианит и хлорит.

Реконструкция протолита гнейсов предполагает их образование по карбонатсодержащим глиноземистым грауваккам или пелит-алевролитовым аргиллитам [5]. Впоследствии осадки претерпели два этапа метаморфических преобразований [4]. На первом этапе они подверглись региональному метаморфизму кианит-силлиманитового типа (P = 5.2-4.3 кбар, T = 660-606°C), а на втором – контактовому метаморфизму фации гранат-биотитовых роговиков (P = 3.2-2.2 кбар, T = 605-566°C).

Цирконы выделялись обычным методом, включая дробление пробы массой 30 кг до фракции 0.5 мм, выделение тяжелой фракции на концентрационном столе и сепарации в тяжелых жидкостях. Конечный отбор цирконов осуществлялся вручную на бинокулярном микроскопе. Результаты U–Pb-датирования отдельных зерен циркона приведены в табл. 1.

Цирконы представлены идиоморфными призматическими или короткопризматическими кристаллами светло-кремового цвета. Катодолюминесцентные изображения кристаллов показывают наличие ритмичной зональности в одних зернах (кристаллы 1.1, 7.2, 4.1 и др. на рис. 2) и ее отсутствие в других (кристаллы 11.1, 15.1). Для первых характерно умеренное содержание U и Th (U+Th < 700 г/т) и Th/U = 0.16-0.56, для вторых – высокие концентрации этих элементов (U+Th > 4000 г/т) и Th/U = 0.73-0.75 (см. табл. 1). При более пристальном рассмотрении изображений кристаллов в катодолюминесценции можно заметить наличие признаков растворения ранних кристаллов (кристалл 2.1), а также развитие тонких краевых или промежуточных светлых зон, кристаллографически неправильная морфология которых

Рис. 1. Геологическая схема Верхисетского и прилегающих к нему массивов в южной части Верхисетско-Туринской зоны (составлена по материалам Д.А. Двоеглазова, Г.Н. Кузовкова, Д.С. Вагшаля (1972–1979 гг.) и авторов данной статьи).

1 – вулканогенные и вулканогенно-осадочные толщи силурийского(?)-раннедевонского возраста; 2 – породы базальтоидной габбро-гранитной формации; 3–5 – породы тоналит-гранодиоритовой формации (верхисетский комплекс): 3 – малокалиевой тоналит-грондьемитовой (таватуйской) и габбро-диоритовой серий, 4 – калинатровой тоналит-гранодиоритовой серий, 4 – калинатровой тоналит-гранодиоритовой серии, 5 – адамеллит-гранитной серии; 6 – Верхоловские копи – место отбора пробы на циркон из ксенолита метапелитов в гранитоидах Верхисетского массива; 7 – полоса ксенолитов метабазитов в гранитоидах Верхисетского массива.

а – первая группа возрастом 372 ± 2 млн лет; б – вторая группа возрастом 307 ± 3 млн лет. Кружки – точки измерения; номера соответствуют номерам анализов, приведенных в табл. 1.

предполагает явления диффузных метасоматических изменений в первичных кристаллах (кристаллы 10.1, 11.1, 13.1, 15.1). Эти явления, возможно, фиксируют перерыв в росте кристаллов циркона. Все это позволяет высказать предположение о наличии трех популяций циркона: 1) зональный циркон ядер; 2) незональный циркон; 3) циркон кайм (обрастающий вокруг некоторых зерен и обладающий сходным с первой популяцией характером зональности).

На U–Pb-диаграмме (рис. 3) возраст цирконов первых двух популяций совпал и составил в среднем $372 \pm 2 (\pm 2 \sigma)$ млн лет. Наличие одновозрастных цирконов с разной катодолюминесцентной картиной и химическим составом мы интерпретируем как образованные одновременно, но из интерстициальных расплавов с различным уровнем содержания Th и U. Наличие послойных мигматитоподобных образований в гнейсах подтверждено полевыми наблюдени-

Точка	²⁰⁶ Pb _o ,	U,	Th,	²³² Th/	²⁰⁶ Pb*,	(1)	(1)	± σ,	(1)	±σ,	(1)	± σ,	(1)	± σ,	Rho
ана-	%	г/т	г/т	²³⁸ U	г/т	Возраст,	²³⁸ U/	%	²⁰⁷ Pb*/ ²⁰⁶ Pb*	%	²⁰⁷ Pb*/	%	²⁰⁶ Pb*/	%	
лиза						млн лет	²⁰⁶ Pb*				²³⁵ U		²³⁸ U		
						206Pb/238U									
4.2	0.00	633	235	0.38	25.9	300 ± 2.7	20.96	0.91	0.0528	2.3	0.347	2.4	0.0477	0.91	0.373
4.1	0.74	283	95	0.35	12	308 ± 3.5	20.46	1.2	0.0497	8.6	0.335	8.7	0.0489	1.2	0.133
5.1*	0.70	275	153	0.57	11.8	312 ± 3.4	20.20	1.1	0.0491	8.3	0.335	8.3	0.0495	1.1	0.132
5.1	0.98	192	103	0.55	8.34	314 ± 4.3	20.01	1.4	0.0514	10	0.354	10	0.0500	1.4	0.136
12.1	0.00	99	16	0.17	4.59	339 ± 4.7	18.54	1.4	0.0576	4.5	0.429	4.8	0.0539	1.4	0.299
7.2	0.00	170	53	0.32	8.53	365 ± 4.5	17.17	1.3	0.0545	6	0.438	6.1	0.0582	1.3	0.208
10.1	1.77	127	22	0.18	6.5	365 ± 6.2	17.14	1.7	0.0458	19	0.368	19	0.0583	1.7	0.089
6.1	0.00	166	34	0.21	8.33	367 ± 4.9	17.09	1.4	0.0547	4.5	0.441	4.7	0.0585	1.4	0.296
7.1	2.44	62	23	0.39	3.21	367 ± 9.6	17.06	2.7	0.0410	33	0.330	34	0.0586	2.7	0.080
8.1	0.00	521	97	0.19	26.4	369 ± 2.8	16.98	0.79	0.0543	2.1	0.441	2.3	0.0589	0.79	0.345
1.1	0.81	192	33	0.18	9.81	370 ± 4.6	16.91	1.3	0.0520	9.1	0.424	9.1	0.0591	1.3	0.139
11.1	0.77	2439	1825	0.77	125	370 ± 3.0	16.91	0.84	0.0541	3.4	0.441	3.5	0.0591	0.84	0.243
14.1	0.55	228	53	0.24	11.7	370 ± 3.7	16.91	1	0.0524	6.3	0.427	6.4	0.05913	1.0	0.162
9.1	1.05	105	20	0.20	5.39	371 ± 5.8	16.87	1.6	0.0517	11	0.422	11	0.0592	1.6	0.146
13.1	0.77	165	26	0.16	8.63	377 ± 4.5	16.61	1.2	0.0515	8.7	0.427	8.8	0.0602	1.2	0.139
15.1	0.03	3733	3105	0.86	194	379 ± 3.3	16.50	0.89	0.05468	1.1	0.4568	1.4	0.0606	0.89	0.624
3.1	0.45	334	101	0.31	17.5	380 ± 3.6	16.48	0.97	0.0514	5.4	0.430	5.5	0.0607	0.97	0.178
2.1	1.25	126	20	0.17	6.68	382 ± 6.0	16.38	1.6	0.0473	15	0.398	15	0.0610	1.6	0.108

Таблица 1. Результаты U–Pb-изотопного анализа цирконов из ксенолита метапелитов (обр. Ви-728) в гранитоидах Верхисетского массива

Примечание. Погрешность – 1 σ ; Pb₀ и Pb^{*} – обыкновенный и радиогенный свинец соответственно; (1) – введена поправка на обыкновенный свинец по измеренному ²⁰⁴Pb. Погрешность в колибровке стандарта 0.38%. Rho – коэффициент корреляции между ошибками определения отношений ²⁰⁷Pb/²³⁵U и ²⁰⁶Pb/²³⁸U.

ями. Кристаллы возрастом 307 ± 3(±2 σ) млн лет немногочисленны и представлены зональными зернами без следов метасоматических изменений и обрастаний. Эти цирконы мы сопоставляем с цирконом третьей популяции, который образует каймы и является новообразованным по отношению к кристаллам первой и второй популяций.

Полученные результаты указывают на наличие минимум двух возрастных этапов в истории формирования высокоглиноземистых гнейсов, что согласуется с выявленными ранее двумя этапами их метаморфизма: региональным метаморфизмом кианит-силиманитового типа и контактовым метаморфизмом фации гранат-биотитовых роговиков [4]. Первый возрастной этап сопоставим с возрастом регионального метаморфизма кианит-силлиманитового типа, который связан с аккрецией восточно-уральских террейнов к окраине палеоконтинента. На этом этапе были сформированы высокобарические комплексы в пределах восточного контакта Тагильского террейна: 367-370 млн лет в зоне Главного Уральского разлома, 370-372 млн лет - в Салдинском метаморфическом комплексе, 350-355 млн лет – в сысертском комплексе [6, 8, 12]. Этот же этап предшествовал или был близок по времени к внедрению плутонов тоналиттрондъемитового состава Верхисетского массива возрастом 369-367 млн лет [9, 11] и мог отражать их термальное воздействие. Второй возрастной этап 315-300 млн лет соответствует раннему эпи-

Рис. 3. U–Pb-диаграмма с конкордией для цирконов из ксенолита метапелитов (обр. Ви-728) в гранитоидах Верхисетского массива.

зоду коллизионного магматизма на Среднем Урале [2, 9]. Исходя из геологической ситуации и ранее опубликованных геохронологических данных по гранитам Верхисетского массива, мы интерпретируем этот возрастной этап как время контактового метаморфизма гнейсов под воздействием гранитов Верхисетского массива и образования апогнейсовых роговиков. Ранее полученные К–Аг-датировки по биотитам из гранитов и апогнейсовых роговиков, соответствующие 285–299 млн лет [7], подтверждают данную интерпретацию.

Работа выполнена при финансовой поддержке РФФИ (гранты № 12-05-00109-а, 12-05-00132-а) и Программы Президиума РАН 12П-5-1024.

СПИСОК ЛИТЕРАТУРЫ

- Бушляков И.Н., Соболев И.Д. Петрология, минералогия и геохимия гранитоидов Верхисетского массива. М.: Наука, 1976.
- Зинькова Е.А. Геохимия, история формирования и петрогенезис Верхисетского гранитоидного батолита. Автореф. ... дис. канд. геол.-мин. наук. Екатеринбург: ИГГ УрО РАН, 1997. 23 с.
- Карножицкий А.Н. Евгение-Максимилиановские минеральные копи и некоторые другие, новые или малоисследованные месторождения минералов в области Среднего Урала. СПб., 1896. 89 с.
- Козлов П.С., Лиханов И.И., Петров Г.А. Полиметаморфизм ксенолитов высокоглиноземистых пород Верхисетского массива гранитоидов на Среднем Урале // Литосфера. 2008. № 5. С. 84–98.
- Неелов А.Н. Петрохимическая классификация метаморфизованных осадочных и вулканических пород. Л.: Наука, 1980. 100 с.
- 6. *Петров Г.А., Ронкин Ю.Л., Маслов А.В. и др.* Время начала коллизии на Среднем и Северном Урале //

Докл. АН. 2008. Т. 422, № 3. С. 365-370.

- Прибавкин С.В., Пушкарев Е.В., Авдеева А.П. Состав и условия формирования ксенолитов гранатовых гнейсов в гранитоидах Верхисетского массива // Ежегодник-2001. Екатеринбург: ИГГ УрО РАН, 2002. С. 120–126.
- 8. *Пучков В.Н.* Палеогеодинамика Южного и Среднего Урала. Уфа: Даурия, 2000. 146 с.
- 9. Смирнов В.Н., Иванов К.С. Геодинамические условия формирования гранитоидов Верхисетского батолита (Восточный склон Среднего Урала) // Докл. АН. 2013. Т. 451, № 1. С. 65–67.
- Ферштатер Г.Б., Беа Ф., Бородина Н.С. и др. Надсубдукционные анатектические гранитоиды Урала // Геология и геофизика. 2002. Т. 43, № 1. С. 42–56.
- Геология и геофизика. 2002. Т. 43, № 1. С. 42–56. 11. Феритатер Г.Б., Холоднов В.В., Кременецкий А.А. и др. Золотоносные габбро-тоналит-гранодиорит-гранитные массивы Урала: возраст, геохимия, особенности магматической и рудной эволюции // Геология руд. месторождений. 2010. Т. 52, № 1. С. 65–84.
- Echtler H.P., Ivanov K.S., Ronkin Y.L. et al. The tectonometamorphic evolution of gneiss complexes in the Middle Urals, Russia: a reappraisal // Tectonophys. 1997. V. 276, № 1–4. P. 229–251.
- 13. Larionov A.N., Andreichev V.A., Gee D.G. The Neoproterozoic Timanide Orogen of Eastern Baltica // Mem. Geol. Soc. L., 2004. № 30. P. 69–74.
- Williams I.S. U-Th-Pb Geochronology by Ion Microprobe // Applications in microanalitical techniques to understanding mineralizing processes. Reviews in Economic Geology. 1998. V. 7. P. 1–35.