ГЕОХРОНОЛОГИЯ

К ВОПРОСУ О ВОЗРАСТЕ ВМЕЩАЮЩИХ ПОРОД РЕДКОМЕТАЛЛЬНОГО МЕСТОРОЖДЕНИЯ СИБИРКА: Sm-Nd- И U-Pb(ЦИРКОН)-ИЗОТОПНЫЕ ДАННЫЕ

© 2014 г. Е. С. Шагалов, В. В. Холоднов, А. А. Носова*, Н. Г. Солошенко, М. В. Стрелецкая, Д. В. Киселева, В. М. Горожанин**

Месторождение Сибирка расположено в Саткинском районе Челябинской области, на левобережье р. Сатки, возле пос. Сибирка. В настоящее время месторождение включено в Зюраткульский национальный парк. Оно открыто в 1951 г. М.А. Бояриновым на основании аэрогаммасъемки. Месторождение является комплексным с промышленным содержанием Nb, Ta, Zr, Th, Mo, Be. В связи с плохой обогатимостью руд обычными способами месторождение отнесено в разряд забалансовых, однако является крупнейшим редкометалльным месторождением Урала [10]. Данные по составу и структуре месторождения, минералогии руд приведены в [2–5].

Месторождение является самым западным в пределах Главной редкометалльной провинции Урала, выделенной К.К. Золоевым с соавторами [2]. Оно сложено полевошпатовыми, фельдшпатоидно-полевошпатовыми и карбонатитовыми метасоматитами с разнообразной тонкозернистой редкометалльной минерализацией. Эти редкометалльные метасоматиты развиты по трахиандезито-базальтам небольшой локальной вулканической структуры (кальдеры вулкана) и вмещающим ее осадочным породам бакальской и саткинской свит нижнего рифея. Эта вулканическая постройка с редкометалльным месторождением расположена в зоне тектонического нарушения, оперяющего долгоживущий глубинный Юрюзано-Зюраткульский рифтогенный разлом.

Возраст пород месторождения, ранее определенный по валовым пробам [3] (метод не назван, вероятно, K–Ar), – 387–420 млн лет. По мнению Е.М. Еськовой [3], он соответствует раннепалеозойской трахибазальтовой формации западного склона Урала. А.А. Алексеев [1] относил вулканиты субстрата этого месторождения к среднему венду. В монографии К.К. Золоева с соавторами [2, табл. 5.1] это месторождение отнесено к раннерифейской рифтогенно-платформенной щелочнобазальтоидной формации.

Нами получены первые данные по комплексному возрастному датированию и изотопно-геохимическому изучению вмещающих пород и некото-

Номер пробы	SiO ₂	Al_2O_3	TiO ₂	Fe ₂ O _{3общ}	MgO	MnO	CaO	K ₂ O	Na ₂ O	P_2O_5	П.п.п.	Сумма
Сиб-1*	51.82	4.24	0.02	3.29	0.60	0.11	15.65	3.13	0.28	18.50	1.00	98.64
Сиб-2	57.15	7.66	2.03	9.04	3.13	0.37	8.08	0.77	7.30	2.77	1.80	100.10
Сиб-3	52.55	13.71	0.59	3.76	0.57	0.20	10.08	0.00	11.90	1.10	5.70	100.17
Сиб-4	55.71	16.45	1.19	7.35	3.72	0.06	1.29	5.07	7.80	0.80	0.70	100.14
Сиб-5	58.74	10.80	1.70	8.77	3.58	0.21	3.40	2.50	7.95	1.83	0.80	100.29
Сиб-6	54.93	5.00	1.90	18.64	3.32	0.19	7.35	1.22	2.26	1.77	3.30	99.88
Сиб-7	58.31	15.60	0.47	4.15	1.22	0.19	5.92	3.03	7.45	1.56	1.40	99.30
Сиб-8	42.81	11.46	1.09	27.08	0.30	0.42	8.10	0.26	5.24	2.69	0.80	100.25
Сиб-9	62.86	19.37	0.11	1.37	0.08	0.05	0.90	10.80	3.63	0.64	0.50	100.31
Сиб-10/2	73.34	12.06	0.38	4.09	0.23	0.06	1.07	4.41	4.08	0.08	0.30	100.09
Сиб-10/3	71.10	12.49	0.26	4.57	0.61	0.03	1.04	6.47	3.28	0.11	0.40	100.36
Сиб-10/6	71.85	12.37	0.28	4.94	0.71	0.03	0.68	5.22	3.59	0.10	0.30	100.06
Сиб-10/8	53.47	10.49	2.16	10.52	6.78	0.16	8.60	2.91	4.11	0.55	0.40	100.15
Сиб-11/1	48.78	18.52	1.55	11.05	5.54	0.26	0.93	2.53	8.22	0.64	2.00	100.03

Таблица 1. Содержание породообразующих элементов в породах месторождения Сибирка (мас. %)

Примечание. Сиб-1* – монацит-циркон-эгирин-полевошпатовый метасоматит (Zr – 1.2%); Сиб-2 – рибекит-арфведсонитовый трахиандезит, Сиб-3 – карбонатизированный трахиандезит; Сиб-4, Сиб-7, Сиб-11/1 – сиенит; Сиб-5 – вулканическая брекчия; Сиб-6 – андезибазальт; Сиб-8 – рудный (гематитизированный) плагиосиенит; Сиб-9 – эгирин-полевошпатовый метасоматит; Сиб-10/2 – ксенолит трахириодацита; Сиб-10/3, Сиб-10/6 – ксенолиты гранитов; Сиб-10/8 трахиандезибазальт.

** ИГ УНЦ РАН, г. Уфа.

^{*} ИГЕМ РАН, г. Москва.

Рис. 1. Цирконы из ксенолита гранита и график ²⁰⁷Pb/²³⁵U–²⁰⁶Pb/²³⁸U с конкордией.

а – зерна под микроскопом (подписи около точек анализа – содержание U и Th, ниже – возраст); б – график ²⁰⁷Pb/²³⁵U– ²⁰⁶Pb/²³⁸U с конкордией.

рых типов редкометалльных рудоносных метасоматитов месторождения Сибирка.

U–Pb-датирование по циркону. В составе обломков, слагающих эруптивную вулканическую трахибазальтовую брекчию, обнаружены небольшие по размеру ксенолиты амфибол-биотитового гранита. По химическому составу этот гранитный ксенолит (табл. 1) близок к гранитам, завершающим становление кусинско-копанского интрузивного комплекса возрастом 1353 ± 16 млн лет [11]. Южные габбро-гранитные массивы этого комплекса (Копанский, Маткальский, Рябиновский) расположены 5–30 км восточнее-северовосточнее, их размещение также контролируется Юрюзано-Зюраткульским рифтогенным разломом. Близкими возрастными аналогами гранитов в составе кусинско-копанского комплекса,

как известно, являются и некоторые разновидности гранитов-рапакиви Бердяушского массива [7, 8 и др.], расположенного в 25 км севернее от месторождения Сибирка.

Из одного гранитного ксенолита (проба 10/6) выделены цирконы. Эти цирконы по морфологии кристаллов и другим особенностям разделены на два типа (рис. 1а): 1-й тип – это прозрачные розовые кристаллы размером (200–300) × (40–70) мкм, содержащие как единичные, так и обильные включения в центральной части; 2-й тип – непрозрачные и слабопросвечивающие более крупные сиреневато-бурые кристаллы размером (300–400) × (120–160) мкм. Катодолюминесценция обоих типов циркона крайне слабая, она отражает кристаллизационную зональность.

U-Рb-возраст цирконов из данного гранитного ксенолита определен на вторично-ионном масс-

ШАГАЛОВ и др.

		1 1		1			5			1
Номер	²⁰⁶ Pb _c , %	U, г/т	Th, г/т	²³² Th/ ²³⁸ U	²⁰⁶ Рb*, г/т	(1)		(1)		Дискорд.,
точки						²⁰⁶ Pb/ ²³⁸ U	Ј-возраст	²⁰⁷ Pb/ ²⁰⁶ Pl	о-возраст	%
1.1	4.08	598	829	1.43	125	1346	±10	1370	±92	2
2.1	9.82	63	139	2.30	10.9	1073	±27	1162	±590	8
2.2	9.18	46	110	2.44	9.25	1217	±35	1039	±660	-15
3.1	0.10	933	956	1.06	188	1359	±9	1362	±18	0
4.1	0.10	1291	1365	1.09	261	1359	±8	1367	±22	1
5.1	0.06	525	529	1.04	106	1358	±9	1338	±20	-1
6.1	2.67	607	453	0.77	126	1356	±15	1324	±62	-2
7.1	0.19	917	602	0.68	183	1343	±8	1357	±20	1
7.2	1.15	2697	1681	0.64	364	929	±6	1119	±28	21
8.1	1.22	2610	1992	0.79	455	1177	±7	1253	±26	6
8.2	0.47	1510	1994	1.36	286	1279	±8	1346	±22	5

Таблица 2. U-Pb-возраст цирконов из ксенолита гранита во вмещающих аповулканитах месторождения Сибирка

Примечание. Рb_с и **Pb* – общий и радиогенный Pb соответственно. Ошибка в калибровочном стандарте 0.72%. Общий Pb скор**ектирован с использованием ²⁰⁴Pb.

Таблица 3. Расстановка коллекторов на Neptune Plus

L4	L3	L2	L1	С	H1	H2	Н3	H4
¹⁴² Nd	¹⁴³ Nd	¹⁴⁴ Nd	¹⁴⁵ Nd	¹⁴⁶ Nd	¹⁴⁷ Sm	¹⁵⁰ Nd	¹⁵¹ Eu	¹⁵³ Eu
	IT Sm	14°Sm	147Sm	150Sm	¹⁵¹ Eu	1.52Sm	Eu	1.5 3 Sm

Примечание. Время интегрирования 8.389 с.

спектрометре SHRIMP-II в ЦНИИ ВСЕГЕИ по известной методике [16]. Результаты анализа приведены в табл. 2 и на рис. 1б. Точки анализов цирконов 1 типа лежат на конкордии, их конкордантный возраст составляет 1354 ± 7 млн лет. Среди прозрачных цирконов 1-го типа одно из зерен резко обеднено ураном и торием (более чем на порядок). Аналогичные по содержанию урана и тория цирконы ранее были установлены в дацитах машакской свиты [9].

Непрозрачные цирконы 2-го типа обнаруживают химическую (по содержанию U и Th) и возрастную зональность. В центральной части кристаллов этого типа содержание урана и тория относительно низкое, оно соответствует содержанию в прозрачных зернах кристаллов 1-го типа. В краевых частях непрозрачных кристаллов 2-го типа содержание этих элементов возрастает в 3 раза. Возрастная зональность проявляется в уменьшении значений возраста от центра кристаллов к их краям. По анализам данных кристаллов можно построить дискордантную зависимость (см. рис. 1б). Верхнее пересечение дискордии с конкордией соответствует возрасту кристаллизации гранитов 1356 ± 27 млн лет, а нижнее – 616 ± 110 млн лет (возраст преобразования пород). Таким образом, на основании полученных данных возраст циркона в гранитном ксенолите эруптивного трахибазальта составляет 1354–1356 млн лет, он хорошо соответствует приведенным данным по возрасту заключительных этапов среднерифейского гранитоидного магматизма в зоне Юрюзано-Зюраткульского рифтогенного разлома.

Sm-Nd-изотопное датирование. Процедура химической подготовки образцов к измерению концентраций и изотопного состава Sm и Nd состояла из ряда последовательных операций: разложение проб, выделение суммы редких земель, разделение Sm и Nd. Разложение проб проводилось смесью НF и HNO₃ в соотношении 5:1 или 1:1 в зависимости от состава образца в посуде Savillex[™]. Перед разложением, исходя из условий оптимального смешения и минимизации погрешностей, к навеске добавляли определенное количество трасера ¹⁴⁹Sm-¹⁵⁰Nd. Хроматографическое выделение проводилось в две стадии: ступенчатое элюирование 2.3н и 3.9н HCl образца на колонке с катионитом Bio-Rad AG 50×8 (200-400 меш) и выделение Sm и Nd из суммы редких земель – на колонке со смолой LN7A и градиентным элюированием 0.3н и 0.7н HCl. Определение концентраций и изотопного состава Sm и Nd было выполнено в ИГГ УрО РАН (аналитики Н.Г. Солошенко, М.В. Стрелецкая, Д.В. Киселева) масс-спектрометрическим методом на приборах ELAN-9000 и Neptune Plus (табл. 3).

Коррекцию масс-дискриминации на Neptune Plus проводили с использованием внутреннего стандарта Eu. Раствор Eu добавляли к исследуемым образцам непосредственно перед измерением. Отношение Eu для коррекции получено путем многократного измерения стандарта Nd (Neptune test solution) с добавлением раствора Eu (151 Eu/ 153 Eu = 0.917). Типичные погрешности при анализе изотопного состава Sm и Nd, выделенных смесей образцов с трассером для отношений 147 Sm/ 144 Nd и 143 Nd/ 144 Nd не превышали 0.03

Номер обр.	Sm, г/т	Nd, г/т	147Sm/144Nd	±20,%	143Nd/144Nd	±2σ,%	εNd (T)	T–DM
Сиб-1	163.18	1455.33	0.06779	0.010	0.511630	0.000852	2.8	1437
Сиб-2	47.77	372.96	0.07743	0.025	0.511824	0.001454	4.9	1316
Сиб-3	25.70	125.66	0.12366	0.007	0.512196	0.000903	4.1	1366
Сиб-4	11.59	66.71	0.10501	0.009	0.511956	0.001162	2.7	1475
Сиб-5	18.43	109.35	0.10192	0.010	0.511994	0.001444	4.0	1377
Сиб-6	52.99	269.09	0.11905	0.008	0.512147	0.001161	4.0	1379
Сиб-7	40.02	187.14	0.12930	0.006	0.512178	0.001053	2.8	1502
Сиб-8	76.31	415.02	0.11116	0.010	0.512011	0.000896	2.7	1483
Сиб-9	5.87	32.03	0.11081	0.017	0.512036	0.004614	3.2	1437
Сиб-10/2	16.86	91.80	0.11101	0.006	0.511796	0.001205	-1.5	1821
Сиб-10/3	12.52	64.38	0.11754	0.005	0.512147	0.000700	1.1	1634
Сиб-10/6	8.89	46.25	0.11624	0.011	0.511985	0.002126	-1.6	1857
Сиб-10/8	13.93	73.78	0.11418	0.007	0.511838	0.000810	2.8	1479
Сиб-11/1	10.63	49.16	0.13067	0.007	0.512042	0.001142	1.6	1624
Кусинский мас	0.1499		0.51211		-1.9	2223		
Бердяушский м					+2.86.5	2460-1830		
нита и поздни								

Таблица 4. Изотопный состав Sm и Nd в породах месторождения Сибирка и расположенных рядом интрузивных комплексов

Примечание. Величина є_{Nd}(T) для пород месторождения Сибирка вычислена на возраст 1360 млн лет. Т–DM – модельный возраст по [14].

Рис. 2. Sm–Nd-данные для изученных образцов пород месторождения Сибирка. Прямоугольники точек анализов соответствуют ошибке 2σ.

и 0.004% (±2 σ) соответственно и контролировались путем анализа аттестованного международного стандарта BCR-2. Расчеты параметров изохрон проводились с использованием программы ISOPLOT 3-v3.71 r5 [14]. Исследование Sm-Nd-изотопной системы проведено по 14 валовым пробам различных по составу пород (см. табл. 1, 4, рис. 2). Получен ряд эрохронных зависимостей. Одну их таких эрохрон образуют породы сиенитового соста-

ЕЖЕГОДНИК-2013, Тр. ИГГ УрО РАН, вып. 161, 2014

ва с наложенными на них гидротермально-метасоматическими изменениями. Возраст внедрения по 4 точкам этих пород – 1395 ± 46 млн лет, ¹⁴³Nd/¹⁴⁴Ndi = 0.510994 ± 0.000035, СКВО = 0.94. Другую эрохронную зависимость образуют трахибазальтовые аповулканиты и некоторые типы рудоносных метасоматитов месторождения (6 точек), с общим значением возраста 1337 ± 150 млн лет, ¹⁴³Nd/¹⁴⁴Ndi = 0.51111 ± 0.00011, СКВО = 39. Выделенные в самостоятельную эрохрону трахибазальты (2 точки) соответствуют возрасту 1366 ± 82 млн лет, ¹⁴³Nd/¹⁴⁴Ndi = 0.511079 ± 0.00006.

Изотопно-геохимические данные также свидетельствуют о том, что трахиандезит-базальтовые вулканиты на месторождении имеют самые высокие положительные значения єNd (4-4.9), приближающиеся к значениям деплетированной мантии. Сиенитовые и апосиенитовые породы отличают более низкие, но также положительные значения єNd (1.6–2.8), а эгирин-полевошпатовые метасоматиты имеют промежуточные значения єNd (3.2–2.8). Формирование вулканитов и сиенитов, с учетом их геохимических особенностей (высокие концентрации титана, железа, фосфора, высокозарядных РЭ) предполагает смешение магм, отделенных от литосферного и сублитосферного (скорее всего, астеносферного) мантийного источника (диапира или плюма), при явном преобладании последнего при образовании трахиандезит-базальтовых вулканитов. Значения єNd в ксенолитах гранита (-1.6...+1.1) близки к таковым базальтов машакской свиты (0.6-0.8), пород Бердяушского массива (-6.5 ... +2.8) [8, 13] и Кусинского массива (-1.9) [11 и др.]. Породы этих массивов, вероятно, испытали более заметную коровую контаминацию.

В целом эти данные свидетельствуют о том, что начало формирования данного полихроннного редкометалльного месторождения, как и формирование вмещающей вулканической структуры, отвечает началу среднего рифея (1395–1337 млн лет). В дальнейшем, как свидетельствуют данные К–Аг-, Rb– Sr-датирования, появление цирконов с омоложенными датировками и другие данные, это месторождение и в целом рифтовая структура, его вмещающая, испытали неоднократные этапы активизации и гидротермально-метасоматических преобразований.

Работа выполнена при финансовой поддержке Программы Президиума РАН (проект № 12-П-5-2015) и совместного проекта УрО, СО и ДВО РАН № 12-С-5-1022.

СПИСОК ЛИТЕРАТУРЫ

1. Алексеев А.А. Рифейско-вендский магматизм западного склона Южного Урала. М.: Наука, 1984. 136 с.

- Золоев К.К., Левин В.Я., Мормиль С.И., Шардакова Г.Ю. Минерагения и месторождения редких металлов, молибдена, вольфрама Урала. Екатеринбург: МПР РФ ГУПР по Свердловской области, ИГГ УрО РАН, ОАО УГСЭ, 2004. 336 с.
- 3. *Еськова Е.М.* Щелочные редкометальные метасоматиты Урала. М.: Наука, 1976. 292с.
- Еськова Е.М., Ефимов А.Ф. Геология и геохимическая специализация щелочных метасоматитов Западного склона Урала // Редкие элементы в формациях изверженных пород. М.: Недра, 1975. С. 58–75.
- Ефимов А.Ф., Еськова Е.М. Минералогия щелочных метасоматитов западного склона Урала // Новые данные по геологии, минералогии и геохимии щелочных пород. М.: Наука, 1973. С. 90–128.
- Краснобаев А.А., Попов В.С., Беляцкий Б.В. Хронологические и генетические соотношения интрузивных пород Бердяушского плутона (Южный Урал) в свете новых U–Pb и Sm-Nd изотопных данных // ЗРМО. Ч. СХХХХ, № 2. 2011. С. 59–73
- Краснобаев А.А., Ферштатер Г.Б., Беа Ф., Монтеро П. Цирконовый возраст габбро и гранитоидов кусинско-копанского комплекса (Южный Урал) // Ежегодник-2005. Екатеринбург: ИГГ УрО РАН, 2006. С. 300–303.
- Ларин А.М. Граниты рапакиви и ассоциирующие породы. СПб.: Наука, 2011. 402 с.
- 9. Ронкин Ю.Л., Маслов А.В., Козак А.П., Матуков Д.И., Лепихина О.П. Граница нижнего и среднего рифея на Южном Урале: новые изотопные U–Pb SRIMP-II ограничения // Докл. АН. 2007. Т. 415, № 3. С. 370–376.
- Тектоническое районирование и минерагения Урала (аналитический обзор). М.: Геокарт, ГЕОС, 2006. 180 с.
- Холоднов В.В., Ронкин Ю.Л., Ферштатер Г.Б., Прибавкин С.В., Бородина Н.С., Лепихина О.П., Попова О.Ю. Новые Sm-Nd изотопные данные о возрасте Кусинского габбрового массива (Южный Урал) // Ежегодник-2005. Информ. сб. науч. тр. Екатеринбург: ИГГ УрО РАН, 2006. С. 331–334.
- Холоднов В.В., Шагалов Е.С. Верхний и нижний возрастные рубежи среднерифейских рудоносных (Ті– Fe–V) интрузий Кусинско-Копанского комплекса на Южном Урале: U–Pb-датирование цирконов Медведевского месторождения // Докл. АН. 2012. Т. 446, № 4. С. 432–437.
- Belyaev A.M., Larin A.M., Ovchinnikova G.V., Krimsky R.S., Shebanov A.D. Pb-Nd-Sr isotopic constraints on the origin of the 1.35 Ga anorthosite-rapakivi granitenepheline syenite Berdiaush massif (S. Urals, Russia) // Symp. IGCP 315, Belem, Brazil Abstr. V., 1995. P. 13.
- 14. *DePaolo D.J.* Neodymium isotope geochemistry: an introduction. Heidelberg: Springer-Verlag, 1988. 187 p.
- Ludwig K.R. ISOPLOT 3.6 A geochronological toolkit for microsoft excel // Berkeley Geochronology Center. Special Publication № 4. Revision of April 8, 2008. 78 p.
- Williams I.S. U-Th-Pb Geochronology by ion microprobe // Applications in microanalytical techniques to understanding mineralizing processes. Rev. Econom. Geol. 1998. V. 7. P. 1–35.

ЕЖЕГОДНИК-2013, Тр. ИГГ УрО РАН, вып. 161, 2014