— ПЕТРОЛОГИЯ, ГЕОХИМИЯ =

ПОВЕДЕНИЕ РЕДКИХ ЭЛЕМЕНТОВ В КЛИНОПИРОКСЕНАХ КАК ИНДИКАТОР ФОРМАЦИОННОЙ ПРИНАДЛЕЖНОСТИ ДУНИТ-КЛИНОПИРОКСЕНИТОВЫХ КОМПЛЕКСОВ

© 2015 г. И. С. Чащухин, Н. В. Чередниченко, Н. Н. Адамович

ВВЕДЕНИЕ

Известно, что дунит-клинопироксенит-габбровые комплексы принимают участие в строении массивов трех формационных типов – Платиноносного пояса и близких по редокс-состоянию зональных массивов Урало-Аляскинского типа, пассивной окраины Русской платформы и офиолитов. В первых они доминируют, в остальных – слагают краевые части соответственно гарцбургит-лерцолитовых и дунит-гарцбургитовых массивов. Геологическая и химико-вещественная характеристика этих комплексов с разной степенью детальности приведена в многочисленных публикациях. В последнее 20 лет внимание сосредоточено на изучении геохимии редких элементов, позволившем с привлечением геолого-петрологических данных провести сопоставление этих образований и выявить их особенности в различных структурноформационных зонах [2-4].

Мы продолжили эти исследования и изучили поведения малых элементов в клинопироксене – главном их концентраторе верлит-клинопироксенитовых комплексов – в целях выяснения формационной принадлежности внешне сходных комплексов. Решение этого вопроса имеет практическое значение – известно, что потенциально продуктивны на хромитовые руды только дунитклинопироксенитовые комплексы офиолитов.

В качестве объектов изучения были выбраны уральские массивы - наиболее яркие и хорошо геологически изученные предшественниками представители различных формационных типов: Нижнетагильский и Восточнохабарнинский (Урало-Аляскинский тип), Средний Крака с наиболее развитым среди других гарцбургит-лерцолитовых массивов дунит-клинопироксенитовым комплексом и офиолитовые массивы – Войкаро-Сыньинский, Ключевской и Кемпирсайский, а также возможно аналогичная по природе Аккермановская ассоциация в Хабарнинском массиве. Для сопоставления использованы данные по клинопироксенам дунит-верлитклинопироксенит-габбрового комплекса Nordre Bumandsfjord, Арктическая Норвегия [9], природа которого стала предметом недавней дискуссии [10, 13].

МЕТОДЫ ИССЛЕДОВАНИЯ

Сопоставление спектров РЗЭ в клинопироксенах и породах разломных зон океанов [12] и массива Ронда (Испания) [6] показало, что если для участка Eu–Lu наблюдается подобная картина обоих спектров, то в породах, в отличие от клинопироксенов, в диапазоне La-Sm она нарушается и прямой тренд спектров сменяется обратным. Имея в виду, что сосуществующий оливин и ортопироксен в балансе РЗЭ играют подчиненную роль, можно утверждать, что деформация первичного спектра пород вызвана последующими наложенными процессами, прежде всего серпентинизацией и выветриванием. К. Гарридо с коллегами показали, что помимо продуктов серпентинизации и выветривания на форму спектров РЗЭ влияют захваченные во время кристаллизации силикатов флюидные и твердофазные включения; для их удаления ими была разработана методика химического выщелачивания [8]. Мы применили эту методику: отобранные под бинокулярным микроскопом зерна клинопироксенов после тонкого истирания были обработаны горячей (125°С) HCl (5 N) в течение 8 ч, затем горячей (100°С) HNO₃ и промыты тридистиллированной водой. На рис. 1 приведены спектры РЗЭ в породе и клинопироксенах до и после выщелачивания, демонстрирующие существенную корректировку спектров РЗЭ в клинопироксенах.

Анализы на редкие элементы проведены с использованием ICP-MS масс-спектрометра Elan 9000 в Центре коллективного пользования УрО РАН "Геоаналитик". Химический состав клинопироксенов определен на электронно-зондовом микроанализаторе SX100 (аналитик Д.А. Замятин). Чистота конечного материала контролировалась рентгенофазовым анализом (аналитик Т.Я. Гуляева). Химические составы пород выполнены рентгеноспектральным флуоресцентным методом на анализаторах СРМ-25 и XRF 1800 (аналитики Н.П. Горбунова, Л.А. Татаринова, Г.С. Неупокоева).

ПОРОДЫ

Изученные ультрамафиты сложены преимущественно двумя первичными силикатами – оливином и клинопироксеном; роль ортопироксена

Рис. 1. Сопоставление нормированных по хондриту [7] концентраций РЗЭ в клинопироксените и клинопироксене.

1–3 – гора Соловьева, Нижнетагильский массив, обр. 2: 1 – клинопироксенит, 2–3 – клинопироксен: 2 – неочищенный, 3 – очищенный от минеральных примесей; 4–6 – то же для клинопироксенита Войкаро-Сыньинского массива, обр. 6100.

Таблица 1. Химический состав пород (пор.) и клинопироксенов (кп) дунит-верлит-клинопироксенитовых комплексов Урала

10	2		6100		6979		8724		8814		8817		8901		8939	
Компо-	срх			olv. cpx		срх						olv. cpx		срх		
пент	пор.	кп	пор.	кп	пор.	кп	пор.	кп	пор.	КП	пор.	кп	пор.	кп	пор.	КП
SiO ₂	49.96	53.98	46.70	53.33	49.06	54.61	50.35	54.17	50.85	53.71	51.04	54.22	47.53	53.92	52.20	53.31
TiO ₂	0.179	0.19	0.051	0.07	0.077	0.05	0.071	0.04	0.154	0.20	0.175	0.26	0.079	0.13	0.098	0.13
V_2O_3	0.010	_	0.024	-	0.023	-	0.030	_	0.015	-	0.017	-	0.014	_	0.017	_
Al_2O_3	1.97	1.65	1.67	2.12	1.30	0.97	2.18	1.72	1.62	1.74	1.66	1.76	1.49	2.07	1.66	1.56
Cr_2O_3	0.03	0.17	0.17	0.50	0.27	0.39	0.07	0.31	0.17	0.34	0.11	0.40	0.23	0.72	0.13	0.42
FeO*	5.30	4.11	6.81	3.91	6.89	3.11	4.96	4.00	4.89	5.56	5.62	4.13	5.29	3.19	4.03	3.93
MnO	0.07	0.07	0.08	0.10	0.07	0.03	0.09	0.11	0.08	0.19	0.07	0.20	0.06	0.02	0.06	0.04
MgO	21.07	16.48	26.58	15.97	22.92	17.01	20.18	16.46	20.03	17.95	19.69	16.43	26.14	17.13	21.49	18.34
NiO	0.028	_	0.044	_	0.119	-	0.029	_	0.030	_	0.083	_	0.076	_	0.041	_
CaO	19.47	23.50	14.02	23.32	16.26	23.13	19.89	23.30	20.30	19.67	19.42	22.84	14.08	23.05	19.53	21.89
Na ₂ O	0.140	0.16	0.066	0.12	0.151	0.15	0.099	0.10	0.195	0.21	0.163	0.18	0.133	0.18	0.203	0.18
K ₂ O	0.027	0.01	0.002	0.01	0.006	0.00	0.010	0.00	0.010	0.00	0.008	0.00	0.006	0.01	0.028	0.00
П.п.п.	1.3	_	3.2	_	2.2	-	1.6	_	1.3	_	1.5	_	4.5	-	0.3	_
Сумма	99.57	100.31	99.42	99.45	99.34	99.45	99.56	100.23	99.64	99.57	99.56	100.43	99.62	100.42	99.80	99.81
F	12.4	12.3	12.6	12.1	14.4	9.3	12.1	12.0	12.0	14.8	13.8	12.4	10.2	9.5	9.5	10.7
DS	8		17		16		10		8		8		29		1	
Количество ионов в структуре клинопироксенов в расчете на 6 катионов																
Si		1.966		1.959		1.993		1.972		1.964		1.970		1.953		1.946
Ti		0.005		0.002		0.001		0.001		0.006		0.007		0.004		0.003
Aliv		0.029		0.040		0.005		0.027		0.030		0.023		0.043		0.051
Alvi		0.042		0.052		0.036		0.047		0.045		0.052		0.045		0.017
Cr		0.005		0.015		0.011		0.009		0.010		0.011		0.021		0.012
Fe		0.125		0.120		0.095		0.122		0.170		0.125		0.097		0.120
Mg		0.894		0.874		0.925		0.893		0.978		0.889		0.925		0.998
Ca		0.917		0.918		0.905		0.909		0.771		0.889		0.895		0.856
Na		0.006		0.004		0.005		0.004		0.007		0.006		0.006		0.006
K		0.000		0.000		0.000		0.000		0.000		0.000		0.000		0.000

Примечание. Массивы: 2 – Нижнетагильский, 6100 – Войкаро-Сыньинский, 6979 – Кемпирсайский, 8724 – Ключевской, 8814, 8817 – Восточнохабарнинский, 8901 – Аккермановская ассоциация, 8939 – Средний Крака, срх – клинопироксенит, olv. срх – оливиновый клинопироксенит; FeO* – суммарное содержание железа в форме FeO; п.п.п. – потери при прокаливании, F = Fe²⁺/(Fe²⁺+Mg), %; DS – степень серпентинизации, рассчитанная по потерям при прокаливании и по плотности пород, мас. %.

ЕЖЕГОДНИК-2014, Тр. ИГГ УрО РАН, вып. 162, 2015

ЧАЩУХИН и др.

Эле-	2		6100		6979		8724		8814		8817		8901		8939	
мент	пор.	кп	пор.	кп	пор.	кп	пор.	кп	пор.	кп	пор.	кп	пор.	кп	пор.	кп
Rb	0.752	0.141	0.012	0.198	0.227	0.220	0.428	0.017	0.223	0.041	0.150	0.221	0.085	0.064	0.295	0.208
Sr	107.749	106.531	6.847	6.038	7.996	6.655	8.721	6.805	87.849	81.053	79.668	66.896	14.942	14.937	35.232	31.024
Y	2.747	2.780	0.976	1.268	1.674	2.232	1.683	1.908	2.785	3.071	2.753	2.800	2.134	3.028	2.689	2.866
Zr	2.548	3.366	0.321	1.708	0.285	1.466	0.594	1.708	2.285	3.145	2.324	4.268	1.814	2.402	2.166	2.845
Nb	0.154	0.016	0.029	1.037	0.152	0.019	0.604	0.050	0.108	0.766	0.026	0.043	0.076	0.009	0.441	0.115
Cs	0.059	H/o	0.005	H/o	0.019	H/o	0.161	H/o	0.035	H/o	0.022	0.001	0.003	H/o	0.009	0.000
Ba	27.154	1.968	1.488	3.484	1.115	2.612	22.436	0.370	8.261	1.045	12.727	3.774	3.937	1.112	6.301	3.716
La	0.717	0.426	0.129	0.034	0.019	0.012	0.147	0.018	0.526	0.366	0.474	0.350	0.202	0.119	0.326	0.193
Ce	2.168	1.442	0.325	0.096	0.094	0.084	0.413	0.100	1.925	1.564	1.946	1.432	0.583	0.436	1.096	0.705
Pr	0.389	0.258	0.043	0.012	0.029	0.021	0.053	0.021	0.378	0.295	0.372	0.267	0.104	0.082	0.205	0.131
Nd	2.287	1.494	0.204	0.090	0.250	0.218	0.325	0.182	2.303	1.780	2.272	1.575	0.612	0.516	1.160	0.836
Sm	0.753	0.552	0.092	0.055	0.152	0.141	0.163	0.111	0.698	0.565	0.722	0.495	0.253	0.226	0.426	0.308
Eu	0.264	0.183	0.033	0.027	0.065	0.056	0.062	0.048	0.233	0.177	0.229	0.152	0.098	0.089	0.131	0.105
Gd	0.809	0.604	0.119	0.109	0.252	0.259	0.255	0.220	0.721	0.592	0.719	0.535	0.334	0.372	0.499	0.400
Tb	0.126	0.086	0.025	0.020	0.053	0.046	0.054	0.039	0.110	0.081	0.109	0.076	0.063	0.066	0.092	0.064
Dy	0.719	0.502	0.208	0.173	0.390	0.350	0.386	0.295	0.648	0.511	0.661	0.469	0.441	0.460	0.609	0.438
Но	0.132	0.093	0.049	0.041	0.083	0.076	0.082	0.067	0.128	0.105	0.134	0.099	0.100	0.100	0.131	0.095
Er	0.358	0.239	0.149	0.127	0.243	0.225	0.244	0.197	0.358	0.288	0.352	0.257	0.279	0.296	0.371	0.275
Tm	0.045	0.032	0.022	0.018	0.032	0.028	0.030	0.025	0.047	0.036	0.050	0.033	0.041	0.043	0.051	0.037
Yb	0.283	0.187	0.143	0.134	0.193	0.185	0.217	0.165	0.304	0.244	0.320	0.216	0.253	0.265	0.308	0.221
Lu	0.039	0.029	0.022	0.019	0.026	0.026	0.032	0.024	0.043	0.034	0.046	0.032	0.037	0.040	0.044	0.032
Hf	0.146	0.121	0.015	0.046	0.019	0.045	0.029	0.049	0.133	0.120	0.141	0.137	0.079	0.085	0.094	0.088

Таблица 2. Концентрации редких элементов в породах (пор.) и клинопироксенах (кп) дунит-верлит-клинопироксенитовых комплексов Урала (г/т)

Примечание. Н/о – не обнаружено.

Рис. 2. Состав клинопироксенов в координатах Al₂O₃-TiO₂-Na₂O.

Массивы: 1 – Нижнетагильский и Восточнохабарнинский, 2 – Средний Крака, 3 – Аккермановская ассоциация, 4 – Войкаро-Сыньинский, Кемпирсайский, Ключевской, 5 – Северная Норвегия [9].

исключительно мала. По количественным соотношениям минералов преобладают клинопироксениты, в том числе оливинсодержащие (табл. 1). Вторичные минералы представлены кальциевыми амфиболами переменного состава, хлоритом, антигоритом, петельчатым серпентином, флогопитом, магнетитом, нередко Ті-содержащим, иногда карбонатами. В той или иной степени породы испытали высокотемпературные пластические деформации, вплоть до образования порфирокластических структур, аналогичных наблюдаемым в гарцбургит-лерцолитовых комплексах. Так, клинопироксены представлены относительно крупными порфирокластами размером 1-3 мм, погруженными в мелкозернистую массу необластов этого же минерала на 1-2 порядка меньшего размера в срастании с амфиболом, антигоритом, хлоритом, флогопитом и магнетитом. Для порфирокластов характерно волнистое погасание и выделение под углом к спайности пластинок амфибола и рудного минерала, особенно обильных в трещинах излома. Иногда внутри порфирокластов можно наблюдать более крупные кристаллы амфибола, в этом случае пространство вокруг них очищено от амфиболовых вростков. Также очищены от вростков края порфирокластов и необласты. Состав амфибола пластинчатых вростков и продуктов их сегрегации варьирует от тремолита до эденита и контролируется составом минерала-хозяина, что свидетельствует об их распадной природе. Можно предполагать, что до распада клинопироксен содержал конституционную воду, что подтверждается прямыми определениями [1]. В оливиновых клинопи-

ЕЖЕГОДНИК-2014, Тр. ИГГ УрО РАН, вып. 162, 2015

Рис. 3. Нормированные по хондриту концентрации РЗЭ в очищенных от примесей клинопироксенах.

Дунит-клинопироксенитовые комплексы: 1 – Нижнетагильский массив, 2–3 – Восточнохабарнинский массив: 2 – диаллагиты, 3 – клинопироксениты; 4–5 – Средний Крака: 4 – клинопироксениты, 5 – габбро; 6 – верлит Аккермановской ассоциации; 7–8 – офиолиты, массивы: 7 – Войкаро-Сыньинский, 8 – Кемпирсайский, 9 – Ключевской; 10–11 – Северный Bumandsfjord, Норвегия [9]: 10 – перидотиты, 11 – габбро.

роксенитах зерна оливина имеют волнистое погасание, минерал в сильной степени петельчато серпентинизирован; иногда серпентин развивается и по спайности клинопироксена.

СОСТАВ КЛИНОПИРОКСЕНОВ

Составы изученных клинопироксенов и вмещающих пород приведены в табл. 1 и 2. В координатах TiO2-Na2O клинопироксены образуют последовательный ряд: офиолиты (массивы Войкаро-Сыньинский, Кемпирсайский, Ключевской) – пассивная окраина (массив Средний Крака) – Урало-Аляскинский тип (массивы Нижнетагильский и Восточнохабарнинский) - комплекс Nordre Bumandsfjord, Арктическая Норвегия [9] (рис. 2). Тот же порядок прослеживается на спектрах РЗЭ очищенных от примесей клинопироксенов в интервале La-Gd (рис. 3). Следует отметить тожлество в пределах массива спектров клинопироксенов из клинопироксенитов и габбро (массивы Средний Крака и Nordre Bumandsfjord), из мелкозернистых и пегматоидных клинопироксенитов (Восточнохабарнинский массив). Особо следует подчеркнуть практически полное совпадение абсолютных концентраций РЗЭ в клинопироксенах Нижнетагильского и Восточнохабарнинского массивов и их подобие норвежским клинопироксенам (рис. 4).

Поведение остальных некогерентных редких элементов помимо формационной принадлежности контролируется величинами ионного радиуса

Рис. 4. Концентрация РЗЭ в клинопироксенах дунит-клинопироксенитовых комплексов Восточнохабарнинского массива и северной Норвегии [9] относительно клинопироксена Нижнетагильского массива.

1–2 – Восточнохабарнинская ассоциация: 1 – диаллагиты, 2 – мелкозернистые клинопироксениты; 3–4 – Северный Bumandsfjord, Норвегия: 3 – перидотиты, 4 – габбро.

и структурой клинопироксена. Так, независимо от формационного типа вмещающего клинопироксенита прослеживается некоторое подобие соотно-

Рис. 5. Спайдер-диаграммы нормированных по примитивной мантии [11] концентраций редких элементов в клинопироксенах дунит-клинопироксенитовых комплексов Урала.

а – зональные комплексы: 1 – гора Соловьева, клинопироксенит; 2–3 – Восточнохабарнинский массив: 2 – диаллагит, 3 – мелкозернистый клинопироксенит; б – 4 – клинопироксенит Среднего Крака; 5 – оливиновый клинопироксенит Аккермановской ассоциации; в – офиолиты: 6 – клинопироксенит Войкаро-Сыньинского массива; 7 – диаллагит Ключевского массива; 8 – оливиновый клинопироксенит Кемпирсайского массива.

ЕЖЕГОДНИК-2014, Тр. ИГГ УрО РАН, вып. 162, 2015

шений редких элементов; прежде всего, обращают на себя внимание очень низкие концентрации цезия и высокие – стронция (рис. 5). Тем не менее отмеченный выше тренд изменений концентраций редких элементов в клинопироксенах в ряду офиолиты –пассивная окраина – Урало-Аляскинский тип сохранился.

ОБСУЖДЕНИЕ

Широкое развитие порфирокластических структур в породах дунит-клинопироксенитовых комплексов, обычных в лерцолитах и гарцбургитах мантийных ксенолитов, не исключает формирования этих комплексов в условиях верхней мантии. Утверждение об отсутствии или меньшей деформированности пород дунит-клинопироксенитового комплекса, по сравнению с подстилающими мантийными гарцбургитами и лерцолитами [5], представляется некорректным.

По-видимому, дунит-клинопироксенитовые комплексы формировались в ходе кристаллизационной дифференциации различных по составу мантийных источников, различающихся, прежде всего, по соотношению и концентрации легких редкоземельных элементов. Прослеживается определенная координация поведения РЗЭ в дунитклинопироксенитовых и формационно с ними связанных гарцбургит-лерцолитовых комплексов. Так, в ненарушенных разрезах наиболее деплетированные легкими РЗЭ клинопироксениты офиолитов подстилаются гарцбургитами с аналогичными истощенными концентрациями этих элементов. Слабо истощенные РЗЭ лерцолиты пассивной окраины Русской платформы соседствуют с клинопироксенитами, в которых концентрация легких РЗЭ на порядок выше, чем в аналогичных породах офиолитов.

Поразительное подобие спектров РЗЭ в клинопироксенах Урало-Аляскинского типа и Норвегии исключают контаминационную природу последних [9, 10] и позволяет согласиться с утверждением Б. Робинса о формировании ультрамафитов комплекса Nordre Bumandsfjord в ходе фракционной кристаллизации исходного богатого редкими землями источника [13].

Работа выполнена в рамках программы Президиума УрО РАН проект № 15-18-5-53 "Альпинотипные ультрамафиты Урала и связанное с ними хромитовое оруденение: геохимия и изотопия редких элементов, редокс-состояние Fe, Cr-содержащих минеральных твердых растворов, минералогия микровключений" в Центре коллективного пользования УрО РАН "Геоаналитик".

СПИСОК ЛИТЕРАТУРЫ

- Лепеха С.В., Щапова Ю.В., Петрицева В.Г., Чащухин И.С. Дегидратация клинопироксенов из ультрамафитов Урала по данным инфракрасной микроспектроскопии и термического анализа // Минералы: строение, свойства, методы исследования: мат-лы VI Всерос. молодежной науч. конф. Екатеринбург, 2014. С. 53–55.
- 2. Феритатер Г.Б. О природе силурийско-раннедевонских мафит-ультрамафитовых интрузивов, ассоциированных с офиолитами Южного Урала // Литосфера. 2004. № 4. С. 3–29.
- 3. Феритатер Г.Б., Беа Ф. Геохимическая типизация уральских офиолитов // Геохимия. 1996. № 3. С. 195–218.
- Ферштатер Г.Б., Беа Ф., Пушкарев Е.В. и др. Новые данные по геохимии Платиноносного пояса Урала: вклад в понимание петрогенезиса // Геохимия. 1999. № 4. С. 352–370.
- Anonymous. Penrose Field Conference on ophiolites // Geotimes. 1972. V. 17. P. 24–25.
- Bodinier J.-L., Garrido C.J., Chanefo I. et al. Origin of Pyroxenite-Peridotite Veined Mantle by Refertilization Reactions: Evidence from the Ronda Peridotite (Southern Spain) // J. Petrol. 2008. V. 49. No. 5. P. 999–1025.
- Evensen N.M., Hamilton P.J., O'Nions R.K. Rare-earth abundances in chondritic meteorites // Geochim. Cosmochim. Acta. 1978. V. 42. P. 1199–1212.
- Garrido C.J., Bodinier J.-L., Alard O. Incompatible trace element partitioning and residence in anhydrous spinel peridotites and websterites from the Ronda orogenic peridotite // Earth Planet. Sci. Lett. 2000. V. 181. P. 341–358.
- Griffin W.L., Sturt B.A., O'Neill C.J., Kirkland C.L., O'Reilly S.Y. Intrusion and contamination of high-temperature dunite magma: the Nordre Bumandsfjord pluton, Seiland, Arctic Norway // Contrib. Mineral. Petrol. 2013. V. 165, No. 5. P. 903–930.
- Griffin W.L., Sturt B.A., O'Neill C.J., Kirkland C.L., O'Reilly S.Y. Reply to dunite magma or ultramafic cumulates? // Contrib. Mineral. Petrol. 2013. V. 165, No. 6. P. 1543–1544.
- 11. McDonough W.F., Sun S.-S. The composition of the Earth // Chem. Geol. 1995. V. 120. P. 223–253.
- Niu Y. Bulk-rock Major and Trace Element Compositions of Abyssal Peridotites: Implications for Mantle Melting, Melt Extraction and Post-melting Processes Beneath Mid-Ocean Ridges // J. Petrol. 2004. V. 45, No. 12. P. 2423–2458.
- 13. *Robins B*. Dunite magma or ultramafic cumulates? // Contrib. Mineral. Petrol. 2013. V. 165, No. 6. P. 1539–1541.