= ПЕТРОЛОГИЯ, ГЕОХИМИЯ =

НОВЫЕ ДАННЫЕ О ХИМИЧЕСКОМ СОСТАВЕ И ВОЗРАСТЕ ПОРОД КОЗЛИНОГОРСКОГО КОМПЛЕКСА

© 2015 г. Г. Ю. Шардакова, В. П. Савельев*, Б. А. Пужаков*, В. И. Петров*

В зоне сочленения Уральского коллизионного орогена с Восточно-Европейской платформой сосредоточены блоки разного состава, возраста и происхождения. Обзор датировок магматических пород позволяет выделить несколько главных возрастных кластеров для Среднего и Южного Урала: рифейский, венд-кембрийский и палеозойский [16]. Возрасты в интервале 500-440 млн лет здесь редки, ими датируются преимущественно метаморфические процессы и внедрение единичных щелочных комплексов. Нами получены новые данные о химическом составе и возрасте пород козлиногорского комплекса, ранее на геологических картах маркированного пермью (см. ниже). Первичная информация приведена в последнем отчете по геологической съемке [12].

Породы козлиногорского комплекса образуют серию малых тел и даек в Иргизлино-Карской и Бардымской подзонах Бельско-Елецкой и Зилаиро-Лемвинской зон и в разделяющей их зоне дислокаций в районе приустьевой части р. Тахта и по берегам р. Уфа. В геотектоническом отношении это Западно-Уральская мегазона, граница Уфалейского блока и СВ части Башкиркого мегантиклинория. Вмещающими для данного комплекса являются породы слюдяногорской (PR1) и таганайской (RF2) свит; крупное тело приурочено к зоне тектонического контакта двух последних (рис. 1). Комплекс состоит из двух фаз, выделенных при геологосъемочных работах последних лет: I - умереннощелочные габбро; II - щелочные граниты, нефелиновые сиениты, граносиениты. На взгляд одного из авторов, принадлежность нефелиновых сиенитов к описываемому комплексу предстоит доказать более обстоятельно. Ранее ассоциация гранитоидов с нефелиновыми сиенитами в этой части западного склона Урала была описана А.И. Белковским, И.Н. Локтиной [3]. Согласно их данным, "щелочные породы Уфалейского метаморфического блока следует рассматривать как продукты позднепалеозойского платформенного магматизма"; приводится возраст 278-290 млн лет (K-Ar, по роговой обманке). В более поздней работе [2] указан диапазон 396–354 млн лет (тот же метод).

Образования, отнесенные к козлиногорскому комплексу, кратко описаны в работе [5] как поро-

ды Козловогорского (старое название, прим. авт.) участка, аналоги "щелочных пород Сергачинского и Тахтинского участков, продуктивных на редкие металлы, в западной периферии Уфалейского срединного массива". Возраст (К–Аг) пород упомянутых двух участков, по данным [3], укладывается в интервал 430–450 млн лет [2]. В результате работ 2006–2007 гг. на Тахтинской и Козловогорской площадях выделен геохимический ореол Nb, Sn, Pb, Cu, Bi, Mo, подтверждена потенциальная продуктивность на редкометалльное оруденение. Проявления Zr–Nb-минерализации были открыты Аргаяшским отрядом ЧГРЭ еще в 1969 г. и в ходе работ подробно изучены А.И. Белковским.

Кроме того, не так давно во внутренней части Уфалейского блока нами были обнаружены и описаны [15] сиенитоиды, секущие метаморфиты среднего рифея, которые полностью идентичны породам козлиногорского комплекса. Отдавая дань уважения качественным исследованиям прошлых лет [2–5, 9], авторы не претендуют на цельную характеристику щелочных пород западной части Уфалейского блока. Наше краткое описание приводится для получения общего представления (геохимия и возраст) о породах.

Габброиды I фазы козлиногорского комплекса образуют согласные с вмещающими породами тела до 100 м в поперечнике и до первых сотен метров по простиранию, площадь тел – до 0.5 км², падение СВ под углом 36–50°. К востоку от плотины Долгобродского водохранилища на правобережье р. Уфа в направлении с запада на восток на протяжении 350 м вскрыты мелано- и мезократовые биотитсодержащие габброиды разной зернистости, контакты между разностями постепенные.

Габброиды – темнозелено-серые среднезернистые породы с реликтовой офитовой структурой. Главные первичные минералы в габбро – основной плагиоклаз 50–60%, роговая обманка (реликты) 1–2%, вторичные минералы: актинолит 25–30%, альбит 3–5%, биотит, возможно, есть и ранний, и поздний (5–7%); акцессорные минералы представлены апатитом и магнетитом. Плагиоклаз содержит включения табличек биотита, в краевых частях замещается альбитом. Роговая обманка образует ксеноморфные зерна (1–2 мм в поперечнике), замеща-

^{*} ОАО "Челябинскгеосъемка".

Рис. 1. Геологическая карта Уфалейского блока и его обрамления по материалам ОАО "Челябинскгеосъемка" 2008 г. (с упрощениями). Масштаб 1 : 200 000.

1 – егустинская свита: амфиболиты, плагиогнейсы биотитовые и амфиболовые, мигматиты (PR₁); 2 – слюдяногорская свита: амфиболиты, плагиогнейсы биотит-амфиболовые, гранитогнейсы и мигматиты (PR₁); 3 – таганайская свита: слюдистые кварциты, слюдисто-кварцевые сланцы с гранатом, ставролитов, силлиманитом (RF₂); 4 – куртинская свита: гранат-слюдяно-кварцевые сланцы, графитовые и слюдистые кварциты, амфиболиты гранатовые и цоизитовые (RF₂); 5 – зюзельская свита: базальты, андезитобазальты, альбит-хлорит-серицитовые и углисто-кремнистые сланцы (S₁); 6 – карамалыташская+улутаусская свиты: базальты, альбиты, дациты, плагиориолиты и их туфы (D₂₋₃); интрузивные образования: 7 – пироксениты и 8 – габброиды куртинского комплекса (RF₂); 9 – гранодиориты и граниты битимского комплекса (V₁); 10 – ультрабазиты сакмарского комплекса (O₃); 11 – щелочные габброиды, гранитоиды, сиенитоиды козлино-ского комплекса (P₂). Жирной пунктирной линией с направлением падения (ГУР) и сплошными жирными линиями обозначены разрывные нарушения разных порядков.

ется по спайности биотитом, с краев – актинолитом или полностью – агрегатом биотита и актинолита. По характеру плеохроизма и показателям преломления роговая обманка отвечает магнезиальному арфведсониту. Биотит также встречается в виде крупных корродированных пластинок с включениями апатита и сагенитовой решеткой.

Породы II фазы, сиенитоиды и гранитоиды, образуют дайки мощностью десятки – первые сотни метров при протяженности до 2–3 км, секут рифейские метаморфиты слюдяногорской, кувашской

ЕЖЕГОДНИК-2014, Тр. ИГГ УрО РАН, вып. 162, 2015

и таганайской свит. Сиениты представляют собой среднекрупнозернистые породы с линейной ориентировкой фемических минералов. Текстура их полосчатая, микроструктура – гипидиоморфнозернистая, аллотриоморфнозернистая, катакластическая, участками пойкилопорфиробластическая. Минеральный состав (об.%): олигоклаз + альбит-олигоклаз (35–60), микроклин (15–30), гранат (0–5), амфибол (3–10), магнетит (0–5), акцессорные: циркон, ортит, сфен, эпидот, флюорит, апатит, ильменит и пирит. Плагиоклаз тонко сдвойникован, замещает-

149

ся микроклином, содержит вростки кварца. Микроклин часто решетчатый, присутствуют включения циркона. Гранат образует отдельные зерна 0.1–0.2 и 1–2 мм в диаметре, по составу относится к Мпгроссуляр-альмандину. Амфибол по оптическим свойствам и составу относится к малотитанистому феррогастингситу.

Ко II фазе отнесены также щелочные и нефелиновые сиениты. Это массивные порфировидные породы, в переменных количествах содержащие идиоморфный нефелин. Последний замещается канкринитом, содалитом, анальцимом. Породы часто микроклинизированы, альбитизированы, серицитизированы, иногда окварцованы. В них отмечаются циркон, циртолит, плюмбопирохлор. Цветные минералы в обеих разновидностях сиенитов высокожелезистый эгирин-салит, гастингсит, лепидомелан (по данным В.И. Петрова). Экзоконтактовая фация щелочных сиенитов представлена мигматитами, обогащенными магнетитом, гранатом и амфиболом. Минеральный состав их переменный (об.%): кислый плагиоклаз (35-60), микроклин (10-35), гранат (10-20), амфибол (5-20), магнетит малотитанистый (1-5), кварц (1-15). В них содержатся участки, обогащенные роговой обманкой и гранатом (реликты субстрата?); отмечаются порфиробласты микроклин-пертита; при увеличении их количества появляются пегматоидные прожилки и жилы с порфиробластами феррогастингсита (1-3 см).

Граниты и граносиениты (различаются по содержанию кварца и микроклина) – это лейкократовые, от мелко- до крупнозернистых, породы с массивной, иногда – гнейсовидной текстурой. Встречаются порфировые разности (фенокристы представлены калишпатом), в них базис состоит из кварца, калишпата, альбит-олигоклаза, небольшого количества биотита и мусковита. По плагиоклазу развиваются серицит или вторичный микроклин; встречаются пертиты. Кварц часто имеет волнистое погасание, образует ксеноморфные зерна и их скопления, подчеркивающие гнейсовидность, наряду со "струйчатыми" агрегатами биотита. Последний участками хлоритизирован или замещается мусковитом.

В щелочных гранитах калишпат несколько преобладает над плагиоклазом, цветные минералы в щелочных гранитах представлены эгирином, рибекитом, иногда – астрофиллитом; акцессорные – метамиктный циркон, ортит, сфен, рутил, апатит, гематит, ильменит, магнетит, пирит, изредка – флюорит и турмалин.

Анализы основных типов пород козлиногорского комплекса приведены в табл. 1, их место на классификационной диаграмме [22] показано на рис. 2. По современной классификации [6], габброиды, сиенитоиды и большая часть гранитов козлиногоркого комплекса относятся к подотряду умереннощелочных пород; имеют калинатровый тип щелочности при преобладании Na_2O над K_2O в габброидах, граносиенитах, гранитах и близких соотношениях щелочей в нефелиновых сиенитах. К щелочному подотряду следует отнести нефелиновый сиенит и граниты, в которых встречаются соответствующие минералы (см. выше).

Тренды распределения РЗЭ (рис. 3) для габбро характеризуются высокими содержаниями легких элементов (La 150-360, Ce - 220-450 г/т; La/Yb 100-250) тяжелых – на 1-2 порядка меньшими, наклон тренда положительный при разбросе общих суммарных содержаний РЗЭ 350-970 г/т. Имеется слабая положительная аномалия Еи, входящего, повидимому, в основной плагиоклаз. В габбро фиксируются довольно высокие содержания Ti, Fe, P, характерные для щелочных и латитовых базитов. В сиенитах и граносиенитах тренды распределения более выровненные, при уровне содержаний до 85 г/т, La/Yb 20-80; аномалия Еи также слабая положительная. Измененные (фенитизированные) разности характеризуются суммарными содержаниями РЗЭ в пределах 10-15 г/т и отрицательной аномалией Еи, вероятно связанной изменениями окислительно-восстановительных условий при метасоматозе. В щелочных гранитах тренды распределения РЗЭ лежат между габброидными и сиенитовыми, сумма РЗЭ 200-300 г/т, La/Yb – около 20, аномалии Еи нет.

В габброидах и граносиенитах отмечаются вышекларковые (в 3 раза) содержания Та. С метасоматически измененными фенитизированными вмещающими породами связаны повышенные концентрации Nb. На трендах, нормированных к БСОХ, в неизмененных разностях всех типов фиксируются отрицательные аномалии Nb, Ti, Zr и слабые положительные Ba, Sr.

Возраст козлиногорского комплекса, определенный нами по биотиту из габбро Ar-Ar-методом, составил 457.8 ± 5.8 млн лет (рис. 4). Аг-Аг-датирование выполнялось в Объединенном институте геологии и геофизики РАН (г. Новосибирск). Получены также предварительные результаты определений возраста цирконов (SHRIMP-2, ВСЕГЕИ) из гранитов, подавляющее большинство измерений U-Pb-возраста дает результат в узком интервале 449-480 млн лет (см. табл. 1); полные данные и их интерпретация будут опубликованы впоследствии. На основании новых датировок комплекс в новой редакции карты обозначен как позднеордовикский. Однако, по мнению одного из авторов, в комплекс могли быть объединены пространственно совмещенные, близкие по составу, но несколько разновременные образования, поэтому для щелочных пород из разных инъекций возможны и более молодые возраста. Сходной точки зрения придерживается А.А. Краснобаев, имевший дело с фракциями цирконов из щелочных пород этого комплекса.

	Номер анализа												
Компо-	1	2	3	4	5	6	7	8	9	10	11	12	13
нент	Номер пробы												
	3	13	4	1	2	12	5	10	9	11	6	8	7
SiO2	49.4	49.72	49.75	50	51.15	52.33	53.5	53.82	62.03	66.3	67.1	74.34	76.35
TiO ₂	1.47	1.33	1.15	1.37	1.82	1.32	0.82	0.21	0.18	0.6	0.73	0.1	0.02
Al ₂ O ₂	14.83	15.78	16	16.5	17	17.05	17.1	22.34	17.36	16.69	15.93	11.68	13.67
Fe ₂ O ₃	4.3	5.07	4.9	6	6.5	5.44	4.38	1.3	2.09	2.11	2.76	0.81	0.64
FeO	5.25	5.46	5.03	6.11	5.03	4.86	4.68	1.93	2.43	1.66	1.44	3.31	0.71
MnO	0.16	0.16	0.16	0.15	0.16	0.13	0.1	0.1	0.11	0.05	0.04	0.04	0.03
MgO	7.1	6.63	7.8	5	2	3.3	4.6	0.79	1.05	3.5	1.2	0.28	0.06
CaO	8.1	6.56	5.9	5.68	7.13	5.98	4.83	2.33	2.22	2.2	1.7	0.73	0.88
Na ₂ O	4.2	4.4	4.05	4.94	4.5	4.95	5.4	6.37	5.95	4.36	4	3.86	4.99
K ₂ O	3.78	3.08	2.8	2.65	3.25	3.19	3.12	6.23	4.8	3.5	4.5	4.1	2.29
P_2O_5	0.58	0.99	0.88	1.51	1.25	1.31	1.37	0.23	0.14	0.29	0.33	0	0.01
П.п.п.	0.28	0.52	1.2	0.09	0.16	0.13	0.09	3.41	1.09	0.07	0.05	0.72	0.01
Ba	2900	_	1940	6840	6450	-	3250	-	—	—	2010	-	1070
Rb	12.3	_	136.1	81.3	91	_	80.6	-	—	—	95	-	42.7
Sr	3605	_	410	6470	6515	-	3175	—	—	—	1150	-	480
Cs	1.14	_	2.6	3	2.95	-	1.83	—	—	—	1.65	-	0.18
Ta	1.82	—	13.6	14.6	11	-	12.5	—	—	—	11.2	-	4.17
Hf	3.7	—	3.13	2.35	3.81	-	1.31	-	—	—	6.84	-	3.27
Zr	55	_	95	235	110	-	145	-	—	—	45	-	55
Nb	5*										1.7*		
Th	11.2	_	8.12	8.3	7.77	-	25.6	—	_	—	24.5	-	49.5
U	2.1	—	2.02	7.29	4.67	—	3.43	-	—	—	5.89	-	1.12
Cr	67.6	_	48.5	4.55	94.3	-	140.9	—	—	—	256.3	-	189.9
N1	240	_			0	-	0	-	—	—	190	-	30
Co	35.5	_	32.6	38.6	25.2	_	18.1	_	—	—	8.75	-	5.94
SC	25.7	_	16.5	10.4	9.78	_	5.55	_	_	—	5.5	_	0.93
Zn		_	0	20	80	_	0	_	_	—	0	_	0
Br	1.12	_	0.097	0 12	0.20	_	0.25	_	_	_	0.48	_	0.07
Au	0.000	_	276	0.13		_	0.024	_	_	_	0	_	1 47
AS	2.30	_	3.70	0 65	024	_	0.08	_	_	_	1.0/	_	1.4/
SC	0.77	_	4.95	0.05	0.54	_	0.77	_	_	_	0.4	_	0.90
	87.5	_	115 7	366.8	152.7	_	170	_	_	_	0.89 74 Q	_	0.39
La	1/3	_	115.7	<i>4</i> 51	222	_	223	_	_	_	110	_	11.8
Dr	121		13.8	33	10.3		17.0				10.5		1 02
Nd	40.2	_	42.1	817	55.2		49.2	_	_	_	34.7	_	3.2
Sm	82	_	8 74	13.2	10.1	_	8 23	_	_	_	7	_	0.63
Fu	3.98	_	5.65	4 11	6.04	_	3 54	_	_	_	2 66	_	0.072
Gd	5.50	_	635	11.3	9.02	_	7 98	_	_	_	8.03	_	0.072
Th	0.61	_	0.33	1 47	1 17	_	1.05	_	_	_	1 23	_	0.12
Dv	2 53	_	3 27	7.12	5.83	_	5 22	_	_	_	7.22	_	0.12
Ho	0.39	_	0.53	1 33	1 11	_	1.06	_	_	_	1.61	_	0.16
Er	0.75	_	1.09	3.1	2.54	_	2.5	_	_	_	4.43	_	0.43
Tm	0.079	_	0.12	0.4	0.32	_	0.32	_	_	_	0.63	_	0.062
Yb	0.3	_	0.47	1.73	1.47	_	1.52	_	_	_	3.56	_	0.35
Lu	0.035	_	0.057	0.25	0.2	_	0.21	_	_	_	0.57	_	0.057
ΣРЗЭ	305.50	_	354.62	976.51	488.00	_	500.73	_	_	_	276.04	_	27.05

Таблица 1. Содержание петрогенных (мас. %) и редких (г/т) элементов в породах козлиногорского комплекса

Примечание. 1–5 – умереннощелочное габбро, 6–7 – монцониты, 8 – нефелиновый сиенит, 9–10 – умереннощелочные сиениты, 11 – граносиенит, 12–13 – щелочные граниты. Прочерк – элемент не анализировался. Содержания петрогенных элементов определены рентгеноспектральным методом в лаборатории ФХМИ ИГГ УрО РАН; Fe₂O₃, Na₂O, п. п. п – методом "мокрой" химии. Анализы на элементы-примеси выполнены в Испытательном центре "ЦЛАВ" при ГЕОХИ РАН (г. Москва) нейтронно-активационным методом.

* Содержания Nb – средние по типам пород (габбро и гранитам) – приведены в [12] по данным приближенно-количественного спектрального анализа.

ЕЖЕГОДНИК-2014, Тр. ИГГ УрО РАН, вып. 162, 2015

Рис. 2. Диаграмма Na₂O+K₂O-S iO₂ для интрузивных пород [22].

Жирная линия разделяет поля нормальных и умереннощелочных пород. Номера условных знаков соответствуют номерам проб в табл. 1. Поскольку данная диаграмма основана на безводном пересчете, который "сдвигает" содержания некоторых окислов, названия пород в табл. 1 не полностью соответствуют данной диаграмме, а скорректированы в соответствии с минеральным составом пород.

Рис. 3. Нормированные по хондриту (S.S. Sun, 1984 г.) тренды распределения редких элементов в породах козлиногорского комплекса.

1 – габбро, 2 – монцонит, 3 – граносиенит, 4 – щелочной гранит, 5 – поле нефелиновых сиенитов Ильмено-Вишневогорского комплекса (по данным работы [10], 6 – поле трахибазальтов района месторождения Сибирка (по неопубликованным анализам, предоставленным В.В. Холодновым, Е.С. Шагаловым).

Рис. 4. Результаты определения Ar-Ar-возраста (по биотиту) умереннощелочного габбро козлиногорского комплекса.

Состав проанализированного габбро приведен под номером 1 в табл. 1.

Поскольку в данный комплекс входят породы повышенной щелочности, традиционно продуктивные на редкометалльное оруденение, правомерно сравнение с другими известными шелочными комплексами Урала (в составе которых в ряде случаев, как известно, встречаются и карбонатиты). Большая их часть сосредоточена восточнее зоны ГУР; наиболее полно изученным является Ильмено-Вишневогорский комплекс (ИВК), разнотипные породы которого имеют возраст в интервале 440-420 млн лет [9, 10], а изотопные данные предполагают существенную роль мантийного материала в субстрате. Ряд комплексов, приуроченных к западному склону Урала (нязепетровский, тахтинский), современными методами не датированы и дают К-Аг- и Аг-Аг-возраста в широком диапазоне - от 280 до 450 млн лет [2, 5, 9]. Совсем недавно был определен возраст (Sm-Nd-метод) сиенитоидов и базальтоидов месторождения Сибирка [14] – 1395– 1330 млн лет, что почти идентично датировкам щелочных пород Бердяушского массива [8]. Последние два объекта приурочены к машакскому событию – главной фазе среднерифейского континентального рифтогенеза, предшествующего раскрытию Уральского палеоокеана. Данные породы, как и сиенитоиды ИВК, образованы при участии мантийного материала в источнике [10, 14].

Сопоставление показывает (см. рис. 3), что тренды распределения РЗЭ в сходных по основности породах месторождения Сибирка близки к таковым для пород козлиногорского комплекса, первый объект характеризуется несколько повышенным уровнем содержаний РЗЭ. Для сопоставления на рис. 3 нанесено поле миаскитов ИВК [18]. В целом спектры распределения РЗЭ миаскитов ИВК близки к таковым для нашего объекта. Некоторое отличие может быть обусловлено сложным механизмом образования пород ИВК [11, 14]. Мы надеемся, что исследования нефелиновых сиенитов козлиногорского комплекса еще впереди. При отсутствии изотопных данных косвенными характеристиками наличия в субстрате мантийного компонента в нашем случае служат отрицательные аномалии Nb, Ti на трендах, нормированных по БСОХ (в неизмененных разностях), и положительные – Sr, позиция точек на отдельных диаграммах (Пирса – в поле гранитоидов VAG, Гилла – между полями Е-и N-MORB [17, 19, 21]; на других же они лежат в полях внутриплитных образований.

Поскольку фактически запад Уфалейского блока и восточный край Башкирского мегантиклинория – это структуры края Восточно-Европейской платформы, внедрение пород ордовикского возраста описанного состава может отражать некий эпизод тектономагматической активности, связанный с подновленными движениями по ранее существующим рифтовым трещинам. Нечеткие геохимические характеристики свидетельствуют о влиянии наложенных процессов (что видно и в шлифах) и сложном составе субстрата.

Отметим также, что А.И. Белковский, анализируя в своей работе [2]имеющиеся датировки по щелочным комплексам Урала, высказал мнение, что "обращает на себя внимание зональное распределение геохронологических данных с общей тенденцией уменьшения возраста магматических

и метаморфических пород по направлению с запада на восток: от Тараташской глыбы к Восточно-Уральскому поднятию..." В свете появившейся за прошедшие 10 лет новой информации о возрасте пород Бердяушского плутона, тахтинского и козлиногорского комплексов, ИВК, понимание этого утверждения следует несколько скорректировать. Большинство старых (K-Ar, Ar-Ar) датировок укладывалось в интервал 320-240 млн лет, причем количество более молодых возрастов увеличивалось к востоку. Современные изотопные данные показывают, что возраст пород (за исключением Бердяуша и Сибирки) щелочных и щелочно-карбонатитовых комплексов даже на западном склоне Урала укладывается в рамки 450-420 млн лет, а по мере продвижения к востоку увеличивается количество датировок, фиксирующих наложенные процессы: "...связанные с герцинской орогенией (360-320 млн лет) и последующим постколлизионным растяжением (260-240 млн лет)" [10 и ссылки в данной работе]. Таким образом, рост количества зафиксированных пермских и даже пермо-триасовых датировок означает увеличение влияния процессов поздней коллизионной активности по мере продвижения к востоку, "вглубь" Урала, что вполне закономерно.

СПИСОК ЛИТЕРАТУРЫ

- Белковский А.И. Позднепалеозойская ассоциация щелочных гранитов-сиенитов Центрально-Уральского поднятия (Средний Урал, Уфалейский метаморфический блок) // Геохимия магматических пород. Школа "Щелочной магматизм Земли". М.: ГЕОХИ РАН, 2006. http://geo.web.ru/conf/ alkaline/2006/index75.html.
- Белковский А.И., Краснобаев А.А., Локтина И.Н. Состав, возраст домиаскитовых сиенитов и проблема возраста сиенит-миаскитовой формации Урала // Уральский минер. сб. 2000. № 10. С. 132–141.
- Белковский А.И., Локтина И.Н. Раннепалеозойская ассоциация щелочных гранитов-нефелиновых сиенитов западного склона Урала // Докл. АН СССР. Т. 215, № 4. 1974. С. 1206–1209.
- Грабежев А.И., Карагодин С.С., Чащухина В.И., Парфенов В.В. Геохимия метасоматитов щелочных и субщелочных интрузивных комплексов западного склона Среднего Урала. Препринт. Свердловск, 1982. 57 с.
- Золоев К.К., Левин В.Я., Мормиль С.И., Шардакова Г.Ю. Минерагения и месторождения редких металлов, молибдена, вольфрама Урала. Екатеринбург: ИГГ УрО РАН, 2004. 336 с.
- Классификация магматических (изверженных) пород и словарь терминов: Рекомендации Подкомис. по систематике изверженных пород Междунар. союза геол. наук / Под ред. С. В. Ефремова. М.: Недра, 1997. 248 с.
- 7. Краснобаев А.А., Бибикова Е.В., Степанов А.И. и др.

Геология и генезис Бердяушского массива (Ю. Урал) // Изв. АН СССР. Сер. геол. 1984. № 3. С. 3–23.

- 8. Краснобаев А.А., Попов В.С., Беляцкий Б.В. Хронологические и генетические соотношения интрузивных пород Бердяушского плутона (Южный Урал) в свете новых U–Pb и SrNd изотопных данных // ЗРМО. Ч. СХХХХ, № 2. 2011. С. 59–63.
- 9. *Левин В.Я.* Щелочно-карбонатитовые комплексы Урала. Екатеринбург, 1997. 271 с.
- Недосекова И.Л. Возраст и источники вещества ильмено-вишневогорского щелочного комплекса (Урал, Россия): геохимические и изотопные Rb-Sr, Sm-Nd, U-Pb, Lu-Hf данные // Литосфера. 2012. № 5. С. 77–95.
- Недосекова И.Л., Владыкин Н.В., Прибавкин С.В., Баянова Т.Б. Ильмено-Вишневогорский миаскиткарбонатитовый комплекс: происхождение, рудоносность, источники вещества (Урал, Россия) // Геология руд. месторождений. 2009. Т. 51, № 2. С. 157–181.
- Отчет по объекту "Геологическая съемка ГДП-200 N-41-I (Кыштымская площадь)". Челябинск: Челябинскгеосъемка, 2009. Кн. 1. 259 с.
- 13. Пучков В.Н. Геология Урала и Приуралья (актуальные вопросы стратиграфии, тектоники, геодинамики и металлогении). Уфа: Даурия, 2010. 280 с.
- 14. Шагалов Е.С., Холоднов В.В., Носова А.А. и др. К вопросу о возрасте вмещающих пород редкометалльного месторождения Сибирка: Sm–Nd- и U– Рb(циркон) изотопные данные // Ежегодник-2013. Тр. ИГГ УрО РАН. Вып. 161. 2014. С. 362–366.
- Шагалов Е.С., Шардакова Г.Ю. Петрология сиенитоподобных пород, ассоциированных с гранитами Нижнеуфалейского массива (Ю.Урал) // IX Чтения А.Н. Заварицкого. Эволюция внутриконтинентальных подвижных поясов: мат-лы науч. конф. Екатеринбург, 2003. С. 142–143.
- Шардакова Г.Ю. U-Pb возраста цирконов из интрузивных пород Башкирского мегантиклинория – свидетельства импульсов эндогенной активности на восточной окраине Восточно-Европейского кратона // Ежегодник-2013. Тр. ИГГ УрО РАН. Вып. 160. 2014. С. 303–308.
- 17. *Gill J.B.* Orogenic Andesites and Plate Tectonics. Berlin: Springer-Verlag, 1981. 389 p.
- Nedosekova I.L., Belousova E.A., Sharygin V.V., Belyatsky B.V., Baynova T.B. Origin and evolution of the Il'meny-Vishnevogorsky carbonatites (Urals, Russia): insights from trace-elements compositions, Rb-Sr, Sm-Nd, U-Pb and Lu-Hf isotope data // Miner. Petrol. 2013. V. 107. P. 101–123.
- Pearce J.A., Gorman B.E., Birkett T.C. The relationship between major element chemistry and tectonic environment of basic and intermediate volcanic rocks // Earth Planet. Sci. Lett. 1977. V. 36. P. 121–132.
 Pearce J.A., Harris N.B.W., Tindle A.G. Trace element
- Pearce J.A., Harris N.B.W., Tindle A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks // J. Petrol. 1984. V. 25. P. 956–983.
- Pearce J.A. Norry M.J. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks // Contrib. Mineral. Petrol. 1979. V. 69. P. 33–47.
- 22. Wilson M. Igneous petrogenesis. L.: Unwin Himan, 1989. 345 p.