МИНЕРАЛОГИЯ

U–Zr–Ti-АССОЦИАЦИЯ МИНЕРАЛОВ В ВЫСОКОБАРИЧЕСКИХ ГРАНАТОВЫХ ПОРОДАХ МИНДЯКСКОГО МАССИВА (ЮЖНЫЙ УРАЛ)

© 2015 г. И. А. Готтман, Е. В. Пушкарёв, В. В. Хиллер

При изучении высокобарических гранатовых пород Миндякского лерцолитового массива была установлена необычная для мантийных пород уранцирконий-титановая ассоциация минералов, представленная рутилом, ильменитом, U-содержащим шриланкитом, уранинитом. Повышенный интерес к такой ассоциации минералов вызван выявлением в последнее время возможности изотопного U-Pb-датирования рутилов [11] и разработкой термометров на основе содержания ZrO₂ и TiO₂ в минералах [8, 9, 15 и др.], расширяющих возможности установления возраста пород и термодинамических условий их формирования.

Ранее нами было установлено, что высокобарические гранатовые породы в Миндякском массиве представлены: 1) гранатитами и гранатовыми метабазитами, 2) пироповыми вебстеритами и пироп-оливин-шпинелевыми вебстеритами, 3) амфибол-пироксен-ильменит-гранатовыми базитами. Они слагают блоки размером от первых сантиметров до первых метров, залегающие в полимиктовых брекчиях с алюмо-силикатным или серпентинитовым цементом. Полимиковые брекчии образуют тело размером около 500 м с максимальной шириной 300 м, залегающее на контакте полосчатых шпинелевых и плагиоклазовых лерцолитов с расслоенной дунит-клинопироксенитгаббровой серией в северной части массива Миндяк. Полимиктовые брекчии вскрываются на северном и северо-восточном отрогах горы Атутэ. Геологическое положение, строение и состав пород Миндякского массива более подробно рассмотрены ранее [1, 3] и здесь не приводится.

Уран-цирконий-титановая ассоциация минералов была установлена в гранатитах, образующих в серпентинитовых брекчиях блоки размером до 1 м, окруженные со всех сторон каймами родингитов мощностью до 2–3 см. Гранатиты – буроватокрасные породы, состоящие из светлого оранжеворозового высококальциевого пироп-альмандина (80-90 об.%), образующего крупные зерна размером до 1–1.5 см, пространство между которыми выполнено зелено-бурым, высокоглиноземистым ($Al_2O_3 = 17-19$ мас. %) амфиболом (до 5–10 об.%). Породы обогащены рутилом, апатитом и цирконом, которые встречаются как в виде включений в гранате, так и в межзерновом пространстве. Некоторые участки гранатитов имеют крупнозернистую и пегматоидную структуру и сложены агрегатом амфибола и рутила. Размер кристаллов рутила в этих участках достигает нескольких сантиметров. Микроскопическое исследование фрагментов таких кристаллов показало, что они содержат многочисленные, тончайшие, оптически сложно диагностируемые включения. Изучение включений на рентгеноспектральном микроанализаторе Cameca SX-100 позволило установить ильменит, U-содержащий шриланкит, уранинит, титанит, диаспор и хегбомит.

В рутиле ильменит образует пластинчатые вростки до нескольких миллиметров по длинной оси (рис. 1а) и тончайшие ламели до нескольких десятков микрометров, предположительно образовавшиеся в результате распада твердого раствора (см. рис. 1б). В зависимости от сечения ламели могут образовывать решетку или систему параллельных пластинок. Ламели прямые, линейные, крайне редко с узелковыми раздувами. Состав ильменита из ламелей отличается от такового из пластинчатых выростков более низким содержанием MgO - 0.3-0.6 и 1.5-3.5 мас. % соответственно (табл. 1). Также в рутиле наблюдаются многочисленные игольчатые включения уранинита, образующие структуру распада твердого раствора. Размер зерен уранинита и их ориентировка совпадают с размером и ориентировкой ламелей ильменита (см. рис. 1д). Редко уранинит образует включения сложной формы, размером около 10-15 мкм, иногда в срастании со шриланкитом (см. рис. 1г). Кроме того, в рутиле наблюдаются пластинчатые включения диаспора, размер и ориентировка которых близки таковым ламелей ильменита и уранинита.

Среди включений установлен шриланкит – $ZrTi_2O_6$, редкий титанат циркония. Наибольшее количество включений шриланкита, около 80–90%, имеющих субидиоморфную или неправильную форму, приурочено к пластинчатым зернам ильменита (см. рис. 1а, в), меньшее количество (~10–20%) включений наблюдается в рутиле, и для них характерна либо амебообразная, либо изометричная форма. Включения шриланкита в рутиле срастаются с титанитом или уранинитом (см. рис. 1г). Состав шриланкита характеризуется широкими вариациями содержаний UO₂ от 0.8 до 20 мас. % (см. табл. 1), что отличает его от состава известных шриланкитов, опи-

Рис. 1. Микрофотографии в обратнорассеянных электронах.

а – рутил (Rt) с включениями ильменита (Ilm I) и U-содержащего приланкита (Sri), б – рутил с ильменитовым распадом (Ilm II) в срастани с ильменитом (Ilm I), в – гипидиоморфное включение U-содержащего приланкита (Sri) в ильмените, г – срастание U-содержащего шриланкита и уранинита (Urn) в рутиле, д – ламели ильменита и уранинита в рутиле; е – включение хегбомита в рутиле (Hog).

			1.	-			-				
Компонент	1	2	3	4	5	6	7	8	9	10	11
TiO ₂	53.51	53.75	54.68	55.42	48.27	51.43	55.7	49.79	98.15	98.13	12.74
Al ₂ O ₃	0.10	0.09	0.08	0	0.38	0.32	0.15	0.34	0.16	0.08	59.13
Cr ₂ O ₃	0.04	0.01	-	0.12	-	-	-	-	0.14	0.16	_
FeO*	44.19	44.84	41.69	42.68	1.11	1.09	0.28	0.38	0.35	0.63	13.2
MnO	0.51	0.81	0.45	0.68	-	-	-	-	0	-	0.02
MgO	1.56	1.2	3.53	0.57	_	-	-	-	0.01	-	11.09
ZrO ₂	-	0.02	-	-	_	-	-	-	0.45	0.42	_
Nb ₂ O ₅	0.04	0.01	0	0	_	-	-	-	0.05	0.26	0.08
V_2O_3	0.40	0.07	0.20	0.02	_	-	-	-	0.49	0.60	0.12
UO ₂	-	-	-	-	20.53	10.5	2.56	18.03	-	-	_
ZrO ₂	-	-	-	-	28.67	35.92	38.71	30.64	-	-	_
HfO ₂				0.01	0.20	0.64	1.00	0.21	-	-	_
NiO	-	-	-	-	-	-	-	-	_	-	0.43
ZnO	-		-	-	-	-	-	-	-	-	1.09
Сумма	100.35	100.8	100.63	99.5	99.16	99.9	98.4	99.39	99.85	100.29	97.90

Таблица 1. Состав включений в рутиле из гранатитов Миндякского массива проба Мк-163 и Мк-214 (мас. %)

Примечание. 1–3 – пластинчатые включения ильменита (Ilm I); 4 – ильменит (Ilm II) из ламелей распада твердого раствора; 5–8 – U-содержащий шриланкит; 9, 10 – рутил; 11 – хегбомит; 12 – титанит. FeO* – все железо в форме FeO. Анализы выполнены на рентгеновском микроанализаторе Cameca SX-100.

Рис. 2. Диаграммы TiO₂–ZrO₂ и ZrO₂–UO₂ для шриланкитов.

Составы: 1 – U-содержащих шриланкитов из гранатитов Миндякского массива, 2 – шриланкитов из эклогитов, гранулитов по данным [2, 5, 14].

санных в литературе [2, 5, 7 и др.], в которых присутствует не более 0.2 мас. % UO₂ (рис. 2а, б). Для субидиоморфных зерен характерна зональность: центральные части обогащены ураном. Между содержанием урана и циркония наблюдается прямая отрицательная корреляция, что свидетельствует о проявлении изоморфизма между этими элементами (см. рис. 2б). Содержания циркония и гафния имеют положительную корреляцию. Следует отметить, что шриланкит в ассоциации с ильменитом содержит FeO до 0.8–1.5 мас. %, а без ильменита – менее 0.5 мас. %.

Хегбомит в рутиле образует включения размером 10–25 мкм (см. рис. 1е, табл. 1), иногда срастающиеся с диаспором. Это пластинки гексагональ-

ЕЖЕГОДНИК-2014, Тр. ИГГ УрО РАН, вып. 162, 2015

ной формы или вытянутые зерна, в последних наблюдается спайность.

Состав рутилов со структурами распада твердых растворов и включениями ильменита и U-содержащего шриланкита характеризуется незначительными примесями FeO (0.2–0.8), Nb₂O₅ (0.2–0.5), V₂O₃ (0.3–0.6) и относительно высоким содержанием ZrO₂ (0.4–0.6) (см. табл. 1). По данным ICP-MS, содержание урана в рутиле составляет около 500 г/т. Высокие содержания циркония в рутиле свидетельствуют о высокой температуре его образования ~900–1000 °C [15, 18]. Структуры распада ильменита и рутила описаны в рутиле из эклогитов ультравысокобарического террейна Алтын-Таг, Китай [10] и эклогитовых ксенолитов из кимберлито-

вых трубок Африки и Якутии [6, 12]. Присутствие шриланкитов также могут отражать высокобарические условия кристаллизации пород, так как, согласно экспериментальным данным, шриланкит в равновесии с рутилом может находиться в равновесии при $T = 1400^{\circ}$ С и P = 28 кбар [13]. Это не противоречит находкам шриланкитов в эклогитах [14], однако они встречаются и в умереннобарических гранулитах [2, 5], а также он получен при низкобарических гидротермальных экспериментах [17]. Обнаружение хегбомита и диаспора в рутиле отражают условия ретроградного преобразования пород [16].

Структуры распада твердого раствора уранинита в рутиле, обнаруженные нами в гранатитах Миндякского массива, ранее не были описаны в литературе. Согласно опубликованным данным [4, 13], существует непрерывный ряд твердых растворов с αPbO_2 -типом структуры между TiO₂ и шриланкитом (ZrTi₂O₆). Изоморфные замещения между ZrTi₂O₆ и UO₂ или браннеритом (UTi₂O₆) неизвестны, поэтому находка высокоурановой разновидности шриланкита, содержащей в составе до 20% UO₂, позволяет ставить вопрос о выделении нового ряда твердых растворов между шриланкитом и уранинитом.

Проведенное исследование уран-цирконий-титановой ассоциации минералов в гранатитах Миндякского массива позволяет заключить, что она формировалась в высокотемпературных условиях около 1000 °С при давлении около 12–14 кбар и, вероятно, связана с проявлением глубинного метасоматоза, приводящего к обогащению пород ураном, цирконием и титаном.

Работа выполнена при финансовой поддержке РФФИ № 13-05-00597, 13-05-96031 р_урал_а (РФФИ-Урал – правительство Свердловской области) и инициативного проекта УрО РАН № 15-18-5-34, полевой грант РФФИ 15-05-10018-К.

СПИСОК ЛИТЕРАТУРЫ

- 1. Денисова Е.А. Внутренняя структура Миндякского ультраосновного массива (Южный Урал) // Докл. АН СССР. 1984. Т. 274, № 2. С. 382–387.
- Костровицкий С.И., Гаранин В.К., Варламов Д.А. Шриланкит – вторая находка в мире // Докл. АН. 1993. Т. 328, № 5. С. 601–604.
- Пушкарев Е.В., Рязанцев А.В., Третьяков А.А., Белова А.А., Готтман И.А. Гранатовые ультрамафиты и мафиты в зоне Главного уральского разлома на Юж-

ном Урале: петрология, возраст и проблема образования // Литосфера. 2010. № 5. С. 101–133.

- 4. Akaogi M., Horiuchi N., Ishii T., Kojitani H. Highpressure phase relations in the system TiO_2 -ZrO₂ to 12 GPa: stability of α PbO₂-type srilankite solid solutions of $(Ti_{1-x}, Zr_x)O_2$ ($0 \le x \le 0.6$) // Phys. Chem. Minerals. 2012. V. 39. P. 797–802.
- Bingen B., Austrheim H., Whitehous M. Ilmenite as a source for zirconium during high-grade metamorphism? Textural evidence from the Caledonides of Western Norway and implications for zircon geochronology // J. Petrol. 2001. V. 42. P. 355–375.
- Choukroun M., O'Reilly S.Y., Griffin W.L., Pearson N.J., Dawson J.B. Hf isotopes of MARID (mica-amphibolerutile-ilmenite-diopside) rutile trace metasomatic processes in the lithospheric mantle // Geol. 2005. V. 33. P. 45–48.
- 7. Dunn P.J., Grice J.D., Fleischer M., Pabst A. New mineral names // Am. Mineralog. 1984. V. 69. P. 210–215.
- Ferry J.M., Watson E.B. New thermodynamic models and revised calibrations for the Ti in zircon and Zr in rutile thermometers // Contrib. Mineral. Petrol. 2007. V. 154. P. 429–437.
- Hayden L.A., Watson E.B., Wark D.A. A thermobarometer for sphene (titanite) // Contrib. Mineral. Petrol. 2008. V. 155. P. 529–540.
- Liu L., Zhang J., Green H.W., Jin Z., Sun Y. UHP Ilmenite exolution from ironbearing rutile in eclogite from the Altyn Tagh // Am. Geophys. Union. NW China, 2004. P. T21A-0504.
- 11. *Meinhold G*. Rutile and its applications in Earth sciences // Earth-Sci. Rev. 2010. V. 102. P. 1–28.
- Sobolev N.V., Yefimova E.S. Composition and petrogenesis of Ti-oxides associated with diamonds // Int. Geol. Rev. 2000. P. 758–767.
- Troitzsch U., Ellis D.J. High-PT study of solid solutions in the system ZrO₂-TiO₂: The stability of srilankite // Eur. J. Mineral. 2004. V. 16. P. 577–584.
- Wang L., Essen E.J., Zhang Y. Mineral inclusions in pyrope crystals from Garnet Ridge, Arizona, USA: implications for processes in the upper mantle // Contrib. Mineral. Petrol. 1999. V. 135. P. 164–178.
- 15. *Watson E.B., Wark D.A., Thomas J.B.* Crystallization thermometers for zircon and rutile // Contrib. Mineral. Petrol. 2006. V. 151. P. 413–433.
- Woodford P.J., Wilson A.F. Sapphire, hogbomite, kornerupine and surinamite from aluminous granulite, northeastern Strangways Range, Central Australia // Neuse Jahrb Mineral Monatsh. 1976. V. 1. P. 15–35.
- Willgallis A., Brauer R., Buhl J.C. Investigation regarding the synthesis of srilankite (Zr_{0.33} i_{0.67})O₂ // Neues Jahrbuch Mineralog. 1987. No. 3. P. 129–135.
- Zack T., Moraes R., Kronz A. Temperature dependence of Zr in rutile: empirical calibration of a rutile thermometer // Contrib. Mineral. Petrol. 2004. V. 148. P. 471–488.