МИНЕРАЛОГИЯ

ФАЯЛИТ ИЗ ГАББРО ДОЮРСКОГО ФУНДАМЕНТА НОВОПОРТОВСКОЙ ПЛОЩАДИ (ЮЖНЫЙ ЯМАЛ, АРКТИКА)

© 2015 г. Ю. В. Ерохин, К. С. Иванов

На Ямале пробурено около 100 структурных и разведочных скважин, вскрывших породы фундамента (доюрского основания) (см. [3]). Из них интрузивные комплексы выявлены только на четырех площадях: Бованенковской, Новопортовской, Верхнереченской и Сюнай-Салинской. Ранее нами уже исследовался вещественный состав пород из кристаллического фундамента п-ова Ямал. Так, в пределах Южного Ямала изучались гранитоиды Верхнереченской площади [4, 5, 10], а также минералогия кварц-серицитовых сланцев Западно-Яротинской площади [7].

Новопортовская площадь расположена в пределах южной части п-ова Ямал, причем непосредственно северо-восточнее Верхнереченской площади и восточнее Западно-Яротинской площади (т.е. изученная нами скв. 215 находится примерно в 50 км от Западно-Яротинской скв. 300; рис. 1). Новопортовская площадь содержит одноименное нефтегазоконденсатное месторождение, открытое еще в 1964 г. и запущенное в опытнопромышленную эксплуатацию в 2009 г.

Сводное геологическое строение фундамента Новопортовской площади приведено в работах [3, 12 и др.]. Район представляет собой систему куполов, сложенных в ядре древними метаморфитами и окруженных известково-глинистыми сланцами с конодонтами раннего ордовика. Вокруг ядра залегают рифогенные водорослевые известняки силура и девона мощностью до 3-4 км. Местами эти известняки включают в себя низкоглиноземистые базальтоиды островодужного типа. В скв. 215 вскрыто мощное интрузивное тело – рудное габбро, которое по петрохимическим характеристикам сходно с габбро, пройденным Восточно-Салехардской скважиной 4, где найдены цирконы возрастом 348 ± 3 млн лет [2]. Интересно, что в другой работе [11] в районе скв. № 215 упоминаются магматические породы пермь-триасового возраста.

Нами опробован полный разрез габброидов по скв. 215 в интервале глубин от 3005 до 3201 м. Причем согласно производственной ведомости, керн является габбро-амфиболитом (с 3005 по 3046 м) переходящим с глубиной в амфиболит (в интервале 3153–3201 м). Наше петрографическое описание показало, что весь разрез сложен достаточно свежим мелко- и среднезернистым оливиновым рудным габбро. Порода сложена плагиоклазклинопироксеновым агрегатом с вкраплениями оливина, апатита и рудных минералов (ильменита и титаномагнетита). Вторичные изменения развиты слабо и обычно приурочены к прожилкам различного состава (карбонатные, цоизитовые и др.). Никакой амфиболитизации породы не устанавливается.

Габбро сложено идиоморфным таблитчатым кислым плагиоклазом (андезином с высокой при-

Рис. 1. Схема расположения скважин, вскрывших палеозой, на п-ове Ямал.

Номера скважин: 215 – Новопортовская, 300 – Западно-Яротинская, 1 – Верхнереченская, 11 – Восточно-Бованенковская, 45 – Сюнай-Салинская, 114 – Бованенковская.

Рис. 2. Фрагмент матрицы оливинового габбро с индивидами фаялита (Fa), авгита (Cpx), титаномагнетита (Mgt) и биотита (Bi) в агрегате плагиоклаза (Plg).

Фото шлифа, без анализатора.

месью К₂О до 1.1 мас. %), в краях переходящим в анортоклаз. В интерстициях плагиоклаза отмечаются скопления зерен калиевого полевого шпата. Клинопироксен образует слабо удлиненные гипидиоморфные зерна серой окраски (без плеохроизма) и имеет устойчивый химический состав, все анализы попадают в поле авгита (En₃₀Wo₄₅Fs₂₅) практически на границе с полем диопсида. В матрице авгита отмечаются редкие и мелкие включения биотита, по составу отвечающего магнезиальному анниту. Кроме того, лейсты биотита обрамляют зерна рудных минералов. Оливин и продукты его изменения описаны ниже. Апатит слагает обильные игольчатые включения во всех породообразующих минералах, по составу отвечает фторапатиту с небольшой примесью гидроксильной группы и хлора.

Титаномагнетит образует в породе однородные зерна квадратного сечения (октаэдрические индивиды) размером до 5 мм и содержит до 25-28 мас. % TiO₂ (т.е. относится к ульвошпинели). Ильменит образует тонкие пластинки как в срастании с титаномагнетитом, так и отдельно по всей матрице породы. По химическому составу ильменит чистый и характеризуется небольшими примесями магния и марганца. Учитывая обилие рудных минералов (до 10 об.%), а также присутствие фаялита, можно уверенно утверждать, что порода относится к феррогаббро. По содержанию щелочей (Na₂O + K₂O в пределах 6.8 мас. %) порода является умереннощелочной и может относится к монцогаббро.

Главной особенностью данного габбро является высокая сохранность оливина. Минерал слагает изометричные округлые, реже слабо вытянутые темно-зеленые зерна размером до 5 мм. Количество оливина в породе достигает 10-15 об.%. В шлифе имеет зеленоватую окраску, высокое двупреломление и резкий рельеф, без спайности, иногда содержит включения рудного минерала (рис. 2). По данным микрозондового анализа, оливин (табл. 1) относится к фаялиту и характеризуется присутствием примесей кальция (CaO до 0.7 мас. %), марганца (MnO до 1.4 мас. %) и магния (MgO до 15.4 мас. %). Какой-либо зональности в зернах не отмечается. Интересно, что фаялит в габбро с глубиной становится более магнезиальным, на глубине 3005 м количество MgO не превышает 9.7 мас. %, а уже на глубине 3198 м - содержание MgO достигает 15.4 мас. %. Более железистый фаялит соответствует феррогортонолиту, а менее железистый - гортонолиту. Из этого следует, что изученная нами интрузия габбро характеризуется зональностью и, по

Компонент	3005 м				3198 м				
	1	2	3	4	5	6	7	8	9
SiO ₂	32.17	32.12	32.06	32.40	32.71	32.82	32.85	33.02	33.03
TiO ₂	0.05	0.09	0.09	0.09	0.08	0.03	0.06	0.07	0.05
Al ₂ O ₃	0.01	_	_	0.09	-	0.01	0.01	0.03	_
Cr ₂ O ₃	0.02	_	0.04	0.03	0.01	0.04	0.05	0.02	0.02
FeO	56.43	56.20	56.38	55.70	49.69	49.58	49.98	49.84	50.01
NiO	0.03	_	_	—	-	0.02	0.01	_	_
MnO	1.29	1.43	1.27	1.15	1.03	1.02	1.08	0.90	1.01
MgO	8.51	8.54	9.65	9.28	15.20	15.10	15.29	15.42	15.39
CaO	0.55	0.52	0.69	0.74	0.45	0.41	0.33	0.47	0.49
Na ₂ O	0.01	0.02	_	0.02	0.01	—	_	_	0.01
K ₂ O	0.02	0.04	0.01	—	0.01	0.04	0.02	_	_
Сумма	99.10	98.96	100.19	99.51	99.18	99.07	99.68	99.77	100.01
Расчет на миналы:									
1	фаялит – 76, форстерит – 21, тефроит – 2, Са-оливин – 1%								
2	фаялит – 75, форстерит – 22, тефроит – 2, Са-оливин – 1%								
3	фаялит – 74, форстерит – 23, тефроит – 2, Са-оливин – 1%								
4	фаялит – 75, форстерит – 22, тефроит – 1.5, Са-оливин – 1.5%								
5	фаялит – 63, форстерит – 35, тефроит – 1, Са-оливин – 1%								
6	фаялит – 63, форстерит – 35, тефроит – 1.5, Са-оливин – 0.5%								
7	фаялит – 63, форстерит – 35, тефроит – 1.5, Са-оливин – 0.5%								
8	фаялит – 63, форстерит – 35, тефроит – 1, Са-оливин – 1%								
9	фаялит – 63, форстерит – 35, тефроит – 1, Са-оливин – 1%								

Таблица 1. Химический состав фаялита из габброидов Новопортовской площади, скв. 215 (мас. %)

Примечание. Анализы сделаны на микроанализаторе Сатеса SX 100, ИГГ УрО РАН, аналитик В.В. Хиллер.

всей видимости, является расслоенной. В целом фаялит является обычным минералом феррогаббро, к примеру, он описывался в известной Скергаардской интрузии в Гренландии [6 и др.].

Вторичные изменения в габбро, хоть и не сильно затронули породу и относятся к низкотемпературным, но оказали существенное влияние на оливин. Зерна фаялита часто с периферии, реже полностью замещаются пластинчатым агрегатом красноватокоричневого иддингсита. Несмотря на внешнюю однородность вторичного минерала, химический состав иддингсита сильно варьирует, он занимает промежуточное положение между миннесотаитом и шамозитом.

Исследование показывает, что интрузия, вскрытая скв. 215 в пределах Новопортовской площади, сложена "свежими" субщелочными феррогаббро. Массив основных пород. вполне возможно, является расслоенным, так как с глубиной изменяется химизм минералов (фаялита, авгита и т.д.). По всей видимости, данные габброиды являются корневыми интрузиями для широко распространенных в фундаменте Западной Сибири пермско-триасовых базальтов [1, 8, 9 и др.]. В пользу молодого триасового возраста феррогаббро, говорит рядом расположенный (непосредственно южнее) крупный массив гранитоидов из Верхнереченской площади, верхнепермский возраст которого надежно определен методами изотопного и химического датирования [5, 10]. Если Новопортовское габбро имело бы раннекарбоновый возраст, как утверждается в работе [2], то фаялит, как неустойчивый минерал, не сохранился бы под действием кислых флюидов, да и порода должна была претерпеть какие-либо вторичные изменения в виде хлоритизации или пропилитизации.

Таким образом, нами изучен вещественный состав габбро из фундамента Новопортовской площади. Установлено, что порода относится к субщелочным разновидностям феррогаббро и, вероятно, является корневой интрузией для позднепермскораннетриасовых рифтогенных базальтов (ее возможными аналогами являются Тюменская, Норильская интрузии и др.). Габброиды хорошо сохранились и содержат вкрапленность железистого оливина – фаялита. Химический состав минерала с глубиной становится более магнезиальным и изменяется от феррогортонолита до гортонолита, что позволяет говорить о расслоенности габбровой интрузии.

Исследования проводятся при поддержке Программы Президиума РАН "Поисковые фундаментальные научные исследования в интересах развития Арктической зоны РФ" в рамках работ по проекту "Фундамент северной части Западно-Сибирского мегабассейна...".

СПИСОК ЛИТЕРАТУРЫ

1. Альмухамедов А.И., Медведев А.Я., Кирда И.П., Батурина Т.П. Триасовый вулканогенный комплекс Западной Сибири // Докл. РАН. 1998. Т. 362, № 3. С. 373–377.

- Бочкарев В.С., Брехунцов А.М., Дещеня Н.П., Салтыкова А.К., Ларионов А.Н. Первые прецизионные определения абсолютного возраста палеозойских пород фундамента Западно-Сибирского нефтегазоносного бассейна // Горн. ведомости, 2004. № 6 (1) С. 46–50.
- 3. Бочкарев В.С., Брехунцов А.М., Лукомская К.Г. Складчатый фундамент полуострова Ямал // Горн. ведомости. 2010. № 8 (75). С. 6–35.
- 4. Вотяков С.Л., Иванов К.С., Ерохин Ю.В., Хиллер В.В., Бочкарев В.С., Захаров А.В., Коротков С.А. Вещественный состав и химическое микрозондовое Th-U-Pb-датирование гранитов из фундамента полуострова Ямал // Литосфера. 2013. № 3. С. 57–66.
- 5. Воляков С.Л., Иванов К.С., Хиллер В.В., Бочкарев В.С., Ерохин Ю.В. Химическое микрозондовое Th-U-Pb-датирование монацита и уранинита из гранитов фундамента Ямала // Докл. АН. 2011. Т. 439, № 2. С. 244–247.
- 6. Дир У.А., Хауи Р.А., Зусман Дж. Породообразующие

минералы. Т. 1. Ортосиликаты и кольцевые силикаты. М.: Мир, 1965. 371 с.

- Ерохин Ю.В., Хиллер В.В., Иванов К.С., Рыльков С.А., Бочкарев В.С. Минералогия метаморфических сланцев из доюрского основания южной части полуострова Ямал // Литосфера. 2014. № 5. С. 136–140.
- Иванов К.П. Триасовая трапповая формация Урала. М.: Наука, 1974. 154 с.
- 9. Иванов К.С., Ерохин Ю.В. Палеогеодинамика формирования системы триасовых грабенов Западной Сибири // Докл. АН, 2014. Т. 458, № 4. С. 442–445.
- Иванов К.С., Ерохин Ю.В., Бочкарев В.С., Сергеев С.А., Шокальский С.П. Изотопное U-Pb-датирование гранитов из фундамента Ямала // Горн. ведомости. 2012. № 11 (102). С. 26–34.
- Киченко В.Е., Истратов И.В., Карнаухов С.М. Современные данные о нефтегазоносности палеозойских отложений севера ЯНАО // Вести газовой науки. 2011. № 3 (8). С. 44–58.
- Скоробогатов В.А., Строганов Л.В., Копеев В.Д. Геологическое строение и газонефтеносность Ямала. М.: Недра, 2003. 352 с.