ПРОЯВЛЕНИЕ РАССЛОЕННОСТИ В ВЕРХНЕЙ (АТАЧИТОВОЙ) ЧАСТИ РАЗРЕЗА ПОРФИРИТОВОЙ СУБИНТРУЗИИ. МАГНИТОГОРСКОЕ ЖЕЛЕЗОРУДНОЕ МЕСТОРОЖДЕНИЕ, ЮЖНЫЙ УРАЛ

© 2015 г. Т. Д. Бочарникова, В. В. Холоднов

На Магнитогорском железорудном месторождении основание вулканогенного разреза сложено дифференцированной порфиритовой субинтрузией. Мощность ее в центре месторождения составляет около 1000 м (скв. 2009). Скважина пробурена со дна карьера Главный непосредственно под скарново-магнетитовой рудной залежью и остановлена в габбро-гранитной брекчии.

Порфиритовая субинтрузия в основании сложена пироксеновыми порфиритами, выше по разрезу – пироксен-плагиоклазовыми, плагиоклазовыми порфиритами. Завершается разрез специфическими породами – атачитами, отвечающими по составу трахитам с варьируиющим соотношением в них калия и натрия. В самом верху разреза атачиты имеют обломочное строение, которые ниже переходят в афанитовые породы, а еще ниже по разрезу в плагиоклазовые порфириты [2].

На горе Атач (карьер Главный) атачиты залегают в виде пласта с переменной мощностью 30–50 м и представляют собой обломочную темно-серого цвета породу с неоднородной тонкообломочной основной массой, включающей более крупные об-

Рис. 1. Взаимоотношение двух типов атачитов: натриевого безрудного (1) и калиевого "рудного", насыщенного рудной пылью и содержащего скопления гематита в виде струек и линзочек (2).

Фрагмент обнажения, юго-восточный борт карьера Главный.

ломки порфиритов размером до 10–15 см, редко до 40 см. Крупнообломочные атачиты залегают непосредственно на порфиритах, но иногда они переходят в тонкообломочные атачиты с размером расплавных частиц 2–3 мм. Мощность их составляет 2–3 м, цвет – от темно-серого до черного, часто видна структура течения. Благодаря своей высокой текучести, атачиты инъецированы во вмещающие известняки C_1 в виде крупных и мелких апофиз (силлы, дайки, прожилки), а непосредственно на контакте с известняками локализовано незначительное по масштабам пирит-гематитовое (мушкетовитовое) оруденение [1, 3].

Особенностью атачитов является присутствие в них тонкодисперсного гематита, но степень насыщенности пород рудной пылью различна. Выделяются две разновидности атачитов: ферритизированный, или "рудный", атачит и практически не содержащий рудной пыли – безрудный. "Рудный" атачит – это массивная, плотная порода от темного до черного цвета, представляющая собой непрозрачный в проходящем свете под микроскопом железистый субстрат. Рудное вещество равномерно рассеяно по массе породы, но иногда оно концентрируется в виде четко выраженных струй, огибающих редкие мелкие вкрапленники плагиоклаза, образует скопления в виде линзочек и обособлений сферической формы. В обломочной разновидности атачита рудное вещество огибает отдельные лавокласты, а нередко его так много, что оно цементирует их.

Интересным фрагментом разреза является обнажение, которое находится на горе Атач (юговосточный борт карьера Главный). Здесь мы наблюдали взаимоотношение двух разновидностей атачита: ферритизированного "рудного" и безрудного (рис. 1). Граница между ними резкая и четкая. "Рудный" атачит по отношению к безрудному в разрезе расположен выше. Он насыщен рудной пылью и содержит рудные скопления в виде струек и линзочек. Он как бы "отжат" из из нижележащего безрудного атачита. Последний в своей основной массе содержит видимые под микроскопом редкие реликты обособлений, линзочек, прожилков, сложенных субстратом "рудного" атачита.

Каждый из атачитов имеет свою петрогеохимическую особенность. Они различаются содержани-

ями SiO₂, Na₂O, CaO, MgO, но особенно значимы различия по K₂O, Na₂O, P₂O₅, и потерями при прокаливании (п.п.п.). При этом "рудный" атачит является наиболее калиевым, а безрудный – натриевым. В табл. 1 приведен средний химический состав этих атачитов. Калиевые (ферритизированые) атачиты, по сравнению с натриевыми (безрудными), содержат больше калия - 8.11% (против 3.62%), железа – 9.80% (против 6.72%), фосфора – 0.43% (против 0.20%). По составу они являются более основными – 55.12% SiO₂. В них более высокие концентрации рубидия – 200 г/т (против 123 г/т), ванадия – 132г/т (против 56 г/т), кобальта – 26 г/т (против 14), также тория – Th. Натриевые (безрудные), наоборот, содержат больше натрия – 3.17% (против 1.76%), магния – 2.82% (против 1.91%), кальция – 2.36% (против 1.54%) и п.п.п – 3.00% (против 1.81%). Они более кислые по составу – 59.25% SiO₂ В них больше стронция – 252 г/т (против 224 г/т) и берилия – 1.8 г/т (против 0.9 г/т).

С петрогеохимическими особенностями рассмотренных атачитов четко коррелируют содержания галогенов в акцессорном апатите (табл. 2). Апатиты натриевых атачитов содержат 0.72– 1.55% Cl, апатиты калиевых – 0.10–0.98% Cl. При этом в последних содержания фтора выше, достигая 3.20% (рис. 2).

В апатитах калиевого атачита наряду с хлорфтористой флюидной фазой уже появляется гидроксил-фтористая, ассоциирующая с рудными скоплениями и содержащая только сотые доли процента Сl при нарастающей доле гидроксильной группы. В табл. 3 приведены содержания галогенов в апатите из тонкого прожилка атачита с гематитовой минерализацией. Здесь концентрации хлора снижены до сотых долей процента (0.04–0.06) при значительном содержании фтора (до 3.21%). Присутствие зональных кристаллов апатита, в которых центральная часть содержит больше хлора, чем

Рис. 2. Распределение Cl, F в апатитах из натриевого (1) и калиевого (2) типов атачита.

Таблица	1. Хи	мический	состав	разных	типов	афировых
атачитов,	(мас.	%)				

Vourous	Тип атачита				
компонент	калиевый	натриевый			
SiO ₂	55.12	59.25			
TiO ₂	1.29	1.10			
Al_2O_3	18.76	18.10			
FeO*	9.80	6.72			
MnO	0.09	0.10			
MgO	1.91	2.82			
CaO	1.54	2.36			
Na ₂ O	1.76	3.17			
$K_2 O$	8.11	3.62			
P_2O_5	0.43	0.20			
П.п.п.	1.81	3.00			
n	6	4			

Примечание. FeO*- суммарное железо (Fe₂O₃+ FeO); n - количество проб.

№ п.п.	Форма, размеры зерен апатита	Cl	F	Cl/F		
	Натриевый тип					
1	Таблитчатое, в основной массе породы, n = 4	1.46	1.05	1.30		
2	Таблитчатое, n = 4	1.50	1.52	0.98		
3	Крупное таблитчатое, n = 6	1.55	1.52	1.01		
4	Гексагональное, n = 5	1.48	1.46	1.01		
5	Таблитчатое, n =5	1.42	1.73	0.82		
	Калиевый тип					
6	Мелкое, в основной массе, n =6	0.60	2.10	0.28		
7	То же, n = 6	0.57	1.21	0.47		
8	Таблитчатое, из скопления зерен апатита в основной массе, n = 5	0.98	1.31	0.75		
9	Мелкое, в основной массе породы, n = 5	0.72	1.12	0.64		
10	Игольчатое, около рудного скопления, n = 4	0.09	2.30	0.04		
11	Мелкое зерно, в основной массе, n = 5	0.19	3.20	0.05		

Таблица 2. Состав апатита из разных типов афировых атачитов (мас. %)

Примечание. 1, 8, 9 – юго-восточный борт карьера Дальний; 2–7, 10–11– юго- восточный борт карьера Главный; n – количество измерений в зерне.

№ п.п.	Позиция включения	Cl	F	Cl/F
1	Мелкое зерно в основной массе, n = 5	0.17	1.86	0.09
2	То же, n = 3	0.12	1.89	0.06
3	То же, n = 3	0.06	2.40	0.03
4	То же, n = 3	0.04	2.48	0.02
5	То же, n = 5	0.18	3.21	0.05

Таблица 3. Состав апатита из тонкого (1 см) прожилка атачита с гематитовой минерализацией на контакте с известняком (мас. %)

Примечание. Юго-восточный борт карьера Дальний, горизонт 350-360 м; n - количество измерений в зерне.

№ п.п.	Форма зерна	Профиль		Cl	F	Cl/F
1	Гексагональное	1	Край	0.76	1.91	0.40
		2	Центр	1.21	1.80	0.61
		3	, 1	1.14	1.65	0.69
		4		1.07	1.72	0.62
		5		1.19	1.79	0.66
		6		1.26	1.88	0.67
		7	Край	0.64	1.96	0.33
2	То же	1	Край	1.00	2.05	0.50
		2	-	0.79	1.87	0.42
		3	Центр	1.47	1.78	0.82
		4		1.64	1.81	0.91
		5		1.57	1.78	0.88
		6	Край	1.21	1.70	0.71
3	Таблитчатое	1	Край	0.82	1.45	0.56
		2	Центр	1.45	1.85	0.78
		3		1.44	1.81	0.80
		4		1.45	1.77	0.82
4	То же	1	Край	0.62	2.10	0.30
		2	Центр	1.11	1.97	0.56
		3		1.14	1.73	0.66
				1.16	2.08	0.56

Таблица 4. Зональное распределение Cl и F в апатитах из атачита (мас. %)

Примечание. 1–4 – восточный борт карьера Дальний (скв. 2056, гл. 75.5), 1–7 – точки замера содержаний галогенов по профилю зерна апатита.

краевые зоны, указывает на эволюцию галогенсодержащей флюидной фазы при формировании этих пород (табл. 4).

В рассмотренных типах атачитов снижение концентраций Cl и увеличение F четко коррелируют с ростом в них Ti, P, Fe, K и снижением концентраций Mg,Ca, Na, п.п.п. Богатый щелочами и железом атачитовый расплав в условиях пониженного давления разделился на два комплементарных по калию и натрию щелочных расплава. Один сконцентрировал в себе преимущественно хлор, натрий, известь и сформировавшийся как более тяжелый на более низком гипсометрическом уровне, а второй, более сухой, но обогащенный фтором, калием, железом, рубидием, ванадием, занял более высокую позицию в разрезе. При благоприятных условиях на контакте с известняками основная масса железа из "рудного" атачита сбрасывается в рудную залежь, при этом, как показал анализ, концентрация железа в атачите значительно понижается.

Фактором, способствующем формированию "рудных" атачитов, является ассимиляция карбонатного материала, при которой происходит разложение карбонатов с выделением свободной углекислоты. Последняя, трансформируясь в СО, также выступает в роли окислительного агента.

Согласно представлению [4, 5], ферритизация расплава – это перерождение железосодержащих силикатных расплавов, приводящее к обособлению рудной составляющей и предопределяющее зарождение и дальнейшее формирование рудоносного флюида, при этом важную роль в этих процессах играют галогены Cl и F. Из этого следует, что появление ферритизированных "рудных" атачитов, повидимому, отражает начальный этап зарождения и формирования рудоносного флюида.

Таким образом, на основе полученных данных мы можем сделать вывод о том, что в атачитовой части разреза, как наиболее насыщенной щелочами и летучими, произошло локальное флюидномагматическое расслоение. Образовались два вида атачитов, с одной стороны – это натриевые атачиты, обогащенные Na, Ca, Mg с более высоким содержанием Cl в апатите, а с другой – калиевые "рудные" атачиты, обогащенные K, Fe, Ti, P при более высоких концентрациях F в апатите. Данное локальное перераспределение компонентов в общих чертах коррелируется с главной расслоенностью, представленной петрологическими типами пород, слагающими разрез дифференцированной порфиритовой субинтрузии.

Работа выполнена при финансовой поддержке РФФИ, грант 15-05-00576.

СПИСОК ЛИТЕРАТУРЫ

- Бочарникова Т.Д. Порфиритовая интрузия и гематитовое оруденение (Магнитогорское месторождение) // Ежегодник-1994. Екатеринбург: ИГГ УрО РАН, 1995. С. 56–57.
- Бочарникова Т.Д., Холоднов В.В., Шагалов Е.С. О природе внутриинтрузивных "обломочных пород" в составе подрудной порфиритовой интрузии Магнитогорского месторождения // Ежегодник-2013. Тр. ИГГ

ЕЖЕГОДНИК-2014, Тр. ИГГ УрО РАН, вып. 162, 2015

УрО РАН. Вып. 161. 2014. С. 290–296.

- Нечкин Г.С., Семенов И.В., Бочарникова Т. Д. и др. О взаимосвязи и природе атачитов, порфировых базальтов и оруденения на Магнитогорском месторождении // Ежегодник-1988. Свердловск: ИГГ УрО РАН СССР, 1989. С. 39–45.
- 4. Павлов А. Л. Генезис магматических магнетитовых месторождений. Новосибирск: Наука, 1983. 203 с.
- 5. Павлов А.Л., Дымкин А.М. Термодинамика процессов ферритизации в силикатных расплавах и проблемы рудообразования. Новосибирск: Наука, 1979. 89 с.