ВОЛНОВОЙ РЕНТГЕНОФЛУОРЕСЦЕНТНЫЙ СПЕКТРОМЕТР XRF-1800 (SHIMADZU, ЯПОНИЯ) : МЕТОДИКА ОПРЕДЕЛЕНИЯ МИКРОПРИМЕСЕЙ В РУБИНАХ

© 2015 г. Н. П. Горбунова, Л. А. Татаринова, В. С. Кудякова, М. П. Попов

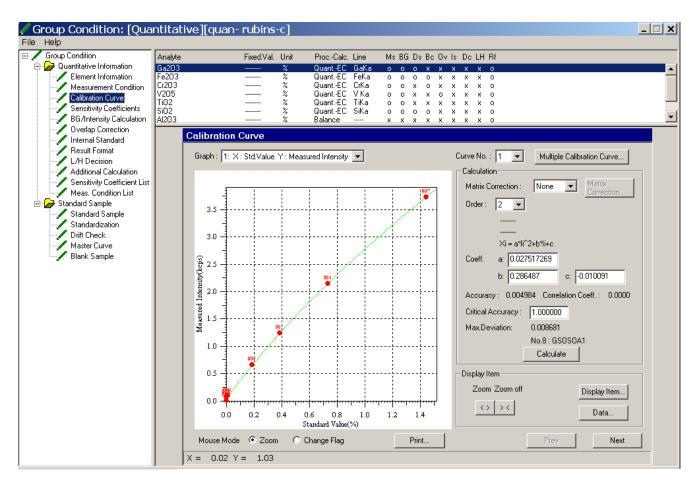
Рентгенофлуоресцентный прибор XRF-1800 фирмы SHIMADZU (Япония) является универсальным волновым спектрометром для определения химического состава различных объектов. Рентгеновская трубка с анодом из родия (мощность 4 кВт) расположена сверху облучаемого образца, что наиболее подходит для прессованных порошковых проб. Прибор в базовой комплектации оснащен четырьмя кристаллами-анализаторами ТАР, РЕТ, Ge, LiF(200), проточно-пропорциональным и сцинтилляционным счетчиками, стабилизатором вакуума и позволяет измерять интенсивности линий и фона элементов от натрия до урана. Стандартные образцы состава различных типов горных пород, имеющиеся в лаборатории и спрессованные в таблетки диаметром 40 мм, используются для построения градуировок. Современное программное обеспечение дает также возможность выполнить качественно-количественный рентгенофлуоресцентный анализ (РФА), сравнительный анализ (наложение до восьми спектров), рассчитать содержание определяемых элементов способами калибровки с учетом матричной коррекции или фундаментальных параметров (FP). Кроме того, спектрометр XRF-1800, обладающий новой опцией локального анализа неоднородных объектов, может проводить картирование участка диаметром 30 мм с шагом 250 мкм и распределением по интенсивностям/ концентрациям элементов.

В программном обеспечении (ПО) наших спектрометров фирмы SHIMADZU есть и сходство, и различия. Принципиальная разница в одновременном накоплении рентгеновских импульсов элементов на EDX-900HS и получении последовательной развертки спектра по длине волны со сменой кристаллов-анализаторов на XRF-1800. Выбор оптимальных условий, особенно угловых положений линии и фона, энергетического профиля детектора, осуществляется экспериментально по рекомендации ПО, с учетом диапазона определяемых содержаний и наличия мешающих элементов.

Со времени освоения XRF-1800 нами были подобраны условия возбуждения и регистрации спектров породообразующих, примесных элементов и измерены стандартные образцы состава различных типов горных пород. Созданы аналитические группы: гипербазиты (определяемые элементы Na – P, K, Ca, Ti, Cr – Zn), силикаты, осадочные (Na – S, K, Ca, Ti – Fe), карбонаты (Na – Si, K, Ca, Ti – Fe), железорудные (Mg – S, K, Ca, Ti – Fe), хромиты (Mg – Si, Ca, Cr, Fe), Rb–Sr–Zr–Air, Ba-2013.

В число анализируемых включены два новых объекта — сульфидные руды и керны нефтяных скважин (содержащие серу и органическое вещество); для этого проведены дополнительные методические работы. Условия измерений сульфидов подобраны по стандартам RUS 1–4. Созданы новые аналитические группы Cu — Zn-14-st (определяемые элементы Na — S, K, Ca, Ti, Mn — Zn, As, Pb) и КЕРН.

Использование спектрометра XRF-1800 в настоящее время позволяет, благодаря измерению фона, контролировать малые содержания элементов (например, Na, Mg в породах, Al, Si, Fe в карбонатах). Анализ единичных образцов заказчика, качественно-количественные определения состава, особенно неизвестных объектов, также выполняются на XRF-1800.


Все изложенное выше относится к РФА порошковых проб, спрессованных в таблетки-излучатели. Необходимость определения состава минералов неразрушающим способом обусловливает методические особенности их анализа.

Целью данной работы является постановка новой методики рентгенофлуоресцентного определения оксидов Mg, Ti, V, Fe, Cr, Ga в природных и синтетических корундах.

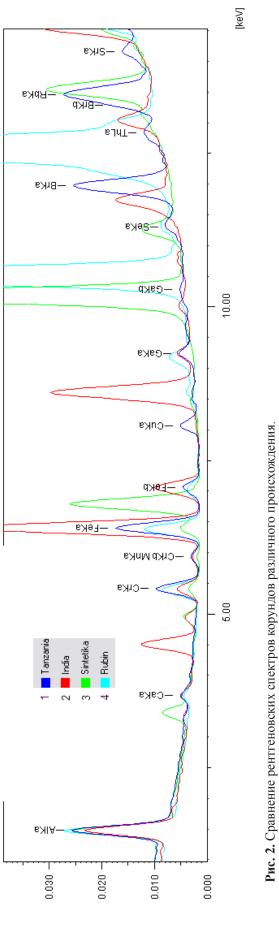
Природные корунды – рубины и сапфиры – относятся к драгоценным камням, стоимость которых широко варьируется в зависимости от их характеристик – цвета, блеска, чистоты, механической прочности. Большинство добываемых минералов низкого и среднего качества, однако современные высокотемпературные технологии по изменению цвета, очистке, заполнению трещин органическим наполнителем, боратным или свинцовым стеклом приводят к увеличению блеска и прозрачности. Возникает необходимость в методах исследования в целях установления подлинности рубинов и сапфиров, их отличия от облагороженных и синтетических камней. Состав корундов зависит от условий их формирования и влияет на цвет, поэтому содержание микропримесей-хромофоров (Fe, Cr, Ti, Mn, V) может служить диагностическим признаком при определении

Параметр	Элемент, аналитическая линия						
	Si K _α	Mg Κ _α	Cr Κ _α	Fe K _α	Ga K _α	Ti K _α	V Kα
Кристалл-анализатор	PET	TAP	LiF	LiF	LiF	LiF	LiF
Положение пика линии, град	108.80	45.00	69.30	57.50	38.90	86.10	75.90
Точки измерения фона, град	106.3	44.2	68.6	56.8	38.0	84.9	76.5
	110.2	46.4	70.7	58.3	39.8	88.1	76.9
Напряжение РТ, кВ	25	20	40	40	40	35	40
Время экспозиции, с	60	60	60	60	60	100	60

Таблица 1. Условия измерений элементов-примесей в корундах на спектрометре XRF-1800

Рис. 1. Градуировочный график для определения галлия в корундах на рентгенофлуоресцентном спектрометре XRF-1800.

месторождения драгоценных камней. Ценность образцов требует неразрушающего контроля, например, методом рентгенофлуоресцентного анализа.


Малые размеры минералов и отсутствие монокристаллических образцов сравнения обусловливают методические особенности их пробоподготовки и измерений на волновом спектрометре XRF-1800.

ПОДГОТОВКА ПРОБ КОРУНДОВ И ОБРАЗЦОВ СРАВНЕНИЯ

Вданной работе использованы два типа образцов: порошкообразные и монокристаллические корунды. Специально изготовленные ограничительные

маски (диаметр центрального отверстия 5 мм, а внутренняя фаска 25 мм) позволяют поместить в кювету как спрессованные из 2 г порошка таблетки Ø 20мм, так и плоские отшлифованные кристаллы и огранки. Коллиматор спектрометра при этом 3 мм. Сравнение рентгеновских спектров одного и того же однородного синтетического образца в виде таблетки и монокристалла показало, что интенсивности примесных элементов совпадают, поэтому для построения градуировочной зависимости были приготовлены порошковые смеси на основе оксида алюминия с концентрациями микропримесей от 0.0038 до 1.5%, что соответствует их содержаниям в природных образцах [5–7].

[cps/uA] Ti-U

Оксиды алюминия, галлия, железа, хрома, титана, кремния, магния прокаливают при температуре 800° С, оксид ванадия просушивают при температуре 300° С до постоянной массы. В первую очередь подготовлена исходная смесь с содержанием \sim по 1.5% Ga_2O_3 , Fe_2O_3 , Cr_2O_3 , TiO_2 , V_2O_5 , MgO, SiO_2 , а из нее — остальные пять градуировочных образцов серии (последовательным разбавлением 1:1 основой, растирая в ступке со спиртом не менее 2 ч). Из полученных \sim 6 г каждой смеси с добавлением 5%-го раствора поливинилового спирта спрессовано по три таблетки \emptyset 20мм.

ОПРЕДЕЛЕНИЕ ОПТИМАЛЬНЫХ УСЛОВИЙ ИЗМЕРЕНИЙ КОРУНДОВ НА СПЕКТРОМЕТРЕ XRF-1800

Для увеличения чувствительности и повторяемости определения содержаний микропримесей подобраны условия возбуждения и регистрации аналитических линий. Проведены классические эксперименты [3], в которых последовательно изучено действие одного фактора, в то время как все остальные были стабилизированы. Однофакторный эксперимент проводили на синтетических монокристаллах корунда при фиксированных для всех элементов значениях силы тока рентгеновской трубки 95 мА, среды — вакуум, апертуры 3 мм. Выбранные оптимальные условия измерений рентгеновских спектров приведены в табл. 1.

В ПО спектрометра XRF-1800 в режиме количественного анализа образцов создана аналитическая группа *quan-rubins*, а для качественно-количественных определений способом фундаментальных параметров — группа *ruby*. Все приготовленные в таблетках смеси, основа оксида алюминия, как фоновый излучатель, а также государственный стандартный образец ГСО 2655-83 СОА-1 многократно измерены на приборе. После сглаживания спектров по 25 точкам способом Савицкого — Галлея и ручной коррекции фона вычислены интенсивности линий элементов и построены калибровки для определения содержаний оксидов исследуемых элементов. Градуировочный график для галлия приведен на рис. 1.

На рис. 2 сравниваются рентгеновские спектры проб различного происхождения. Методика может быть использована для разделения корундов по месторождениям. Подобная работа проведена А.В. Поротниковым в лаборатории ФХМИ ИГГ УрО РАН для автоматического определения происхождения изумруда [1].

ВЫВОДЫ

Разработана неразрушающая методика количественного рентгенофлуоресцентного определения оксидов примесных элементов: Fe, Ti, Mg, Ga, V и

Ст, в корундах с использованием волнодисперсионного рентгеновского спектрометра XRF-1800 фирмы SHIMADZU (Япония). Диапазон содержаний 0.01–1.5% с погрешностями не более 30%. Пределы обнаружения составляют от 0.0004% для галлия до 0.01% для магния.

Работа выполнена в рамках научно-исследовательской работы "Развитие аналитически-информационного обеспечения криминалистических исследований цветных драгоценных камней" в ЦКП УрО РАН "Геоаналитик".

СПИСОК ЛИТЕРАТУРЫ

- 1. Поротников А.В., Попов М.П, Горбунова Н.П. Применение линейного дискриминантного анализа для автоматического определения происхождения изумруда по данным рентгенофлуоресцентного анализа // Ежегодник-2012 Тр. ИГГ УрО РАН. Вып. 160. 2013. С. 353–355.
- 2. Ревенко А.Г. Рентгеноспектральный флуоресцент-

- ный анализ природных материалов. Новосибирск: Наука, Сиб. издат. фирма, 1994. 264 с.
- 3. Смагунова А.Н., Козлов В.А. Примеры применения математической теории эксперимента в рентгенофлуоресцентном анализе. Иркутск: Изд-во Иркутского университета, 1990. 232 с.
- 4. *Хиллер В.В., Горбунова Н.П., Пупышев А.А., Киселева Д.В.* Применение энергодисперсионного рентгеновского спектрометра EDX-900 HS для определения состава горных пород // Ежегодник-2005. Екатеринбург, 2006. С. 444–450.
- Peucat J. J., Ruffault P., Fritsch E. Ga/Mg ratio as a new geochemical tool to differentiate magmatic from metamorphic blue sapphires // Lithos. 2007. V. 98. P. 261–274.
- Thirangoon K. Ruby and Pink Sapphire from Aappaluttoq, Greenland. Status of on-going research [электронный ресурс]: giathai.net (дата обращения 26.08.2013)
- 7. *Uher P. A., Giuliani G., Szakáll S., Fallick A.E.* Sapphires related to alkali basalts from the Cerová Highlands, Western Carpathians (southern Slovakia): composition and origin // Geologica Carpathica. 2012. V. 63. P. 1–12.