СРАВНИТЕЛЬНАЯ ОЦЕНКА СТЕПЕНИ МИНЕРАЛИЗАЦИИ ТВЕРДЫХ ТКАНЕЙ ЗУБОВ МЕТОДОМ РАМАНОВСКОЙ СПЕКТРОСКОПИИ

© 2015 г. Д. В. Киселева, А. В. Легких*, Ю. В. Мандра*, Д. А. Замятин

Спектроскопические методы, в частности ИКспектроскопия и спектроскопия комбинационного рассеяния света (рамановская спектроскопия), широко используются в изучении особенностей структуры и дефектообразования органоминеральных агрегатов – костных и зубных тканей; они позволяют получать информацию об особенностях их локальной молекулярной структуры [1, 2]. В твердых биологических тканях рамановская спектроскопия фиксирует молекулярные и ионные колебания минеральных соединений, таких как фосфат, карбонат и гидрофосфат-ионы, а также многочисленные колебания от коллагеновой матрицы, причем на спектрах симметричные колебания молекул или ионов являются самыми интенсивными [1].

Следует также отметить высокое пространственное разрешение (до 0.5–1 мкм), простоту пробоподготовки, сниженные требованиями к поверхности образца (он может быть непрозрачным, гидратированным и др.) и отсутствие разрушений после анализа. Линии на рамановских спектрах настолько узки, что даже малые сдвиги частоты и изменения формы линий четко фиксируются.

Цель исследования – качественная оценка изменения минерального состава зубов человека при кариозном поражении и патологической стираемости зубов в пределах эмали.

Рис. 1. Исследуемый образец – зуб 2.1.

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Объект исследования – зуб 2.1, удаленный по поводу хронического пародонтита тяжелой степени. В области режущего края определяются фасетки стираемости в пределах эмали, на медиальной контактной поверхности отмечается наличие полости, выполненной размягченными пигментированными тканями в пределах эмали (рис. 1).

Поверхность зуба была очищена с использованием циркулярной щетки и пасты Detartrine. С использованием прямого наконечника и алмазного диска с водяным охлаждением из одного зуба было изготовлено три образца размером 2 × 1 × 1 см с сохранением исследуемых патологических элементов: интактная эмаль (контроль), патологическая стираемость в пределах эмали, кариес в пределах эмали.

Спектры получены на рамановском спектрометре LabRam HR Evolution (ИГГ УрО РАН) с основными характеристиками: спектральный диапазон 200–2000 см⁻¹; лазер возбуждения 633 нм; решетка 1800 штр/мм; используемые объективы 50х и 100х.

Цифровые спектры обработаны в программе PeakFit V.4.11, произведена коррекция базовой линии, сглаживание спектров, разложение суммарных пиков на элементарные составляющие.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 2 приведены рамановские спектры некоторых из исследованных зубных тканей в диапазоне 200–2000 см⁻¹. Интерпретация линий спектра по данным [1, 2] приведена в табл. 1.

Как видно из визуального сопоставления спектров, интактная эмаль характеризуется низким фоном, явно выраженными линиями неорганической составляющей (фосфат, карбонат-ионов). На спектрах кариозной зубной ткани и ткани с повышенной стираемостью зафиксирован высокий фон от люминесценции деминерализованных участков, появляются широкие линии от органической составляющей, причем для повышенной стираемости наблюдается остаточный низкоинтенсивный пик PO₄³⁻.

^{*}Уральский государственный медицинский университет, г. Екатеринбург.

Рис. 2. Рамановские спектры исследованных зубов.

а – кариес и повышенная стираемость, б – интактная эмаль.

Таблица 1. Интерпретация полос в рамановском спектре зубной ткани

Рамановский частотный сдвиг, см ⁻¹	Фрагмент, колебание	
430	PO ₄ ³⁻ v ₄ (P-О деформационное)*	
580	$PO_4^{3-}v_4$ (P-O деформационное)*	
855	Бензольное кольцо пролина	
876	Бензольное кольцо гидроксипролина	
950–964	$PO_4^{3-}v_1$ (P-O симметричное валентное)*	
1001–1003	"Дыхательная" мода бензольного кольца фенилаланина	
1030	$PO_4^{3-}v_3$ (P-O асимметричное валентное)*	
1065–1070	СО ₃ ²⁻ v ₁ замещение В-типа (С-О плоскостное валентное)*	
1245–1270	Амид III, С-N-Н валентное	
1445	СН ₂ деформационное крутильное	
1555–1565	Амид II, С-N-Н валентное	
1610–1620	У8а (колебания побочной цепочки тирозина)	
1665	Амид I, С-С-Н валентное	

* Полоса минеральной составляющей.

ЕЖЕГОДНИК-2014, Тр. ИГГ УрО РАН, вып. 162, 2015

Рис. 3. Изменения на рамановских спектрах, фиксирующиеся при приближении к кариозной полости.

Можно проследить качественное изменение рамановских спектров при развитии кариеса: на рис. 3 видно, что при приближении к кариозной полости уменьшается линия фосфата (минеральной компоненты) и появляются широкие линии органических составляющих, а также увеличивается люминесцентный фон.

Линия симметричного валентного колебания $PO_4^{3-}(v_1)$ самая интенсивная в спектре минерализованной ткани. Ее особенностью является высокая чувствительность к минеральному окружению: частота и форма этой линии зависят от локального окружения и изменяются вследствие ионных замещений и изменения степени кристалличности. Во многих исследованиях апатитовых тканей и синтетических апатитов частота линии $PO_4^{3-}(v_1)$ связывалась с составом окружающего минерала. В общем случае в костной и зубной ткани полоса фосфата v_1 является суперпозицией всех трех составляющих; обычно она имеет несимметричную форму из-за вклада колебаний разупорядоченного фосфата и незамещенного гидроскиапатита [2].

Принято классифицировать апатитовое окружение с использованием трех широких категорий с различными частотами соответствующих линий. В замещенном карбонат-апатите В-типа (карбонатионы замещают фосфат-ионы в решетке апатита) фосфатная линия v_1 проявляется в диапазоне 955–959 см⁻¹. В кристаллическом незамещенном гидроксиапатите линия v_1 сдвигается в область 962–964 см⁻¹. И, наконец, линия с частотой 945–950 см⁻¹

свидетельствует о наличии разупорядоченной фосфатной решетки апатита [2].

После обработки спектров в программе PeakFit V.4.11 было произведено разложение суммарного пика PO_4^{3-} в области 940–975 см⁻¹ на три элементарные составляющие (~950, ~960 и ~967 см⁻¹), описываемые произведением элементарных функций Лоренца и Гаусса (рис. 4). Следуя [2], они были приписаны разупорядоченному фосфату, фосфату В-типа и кристаллическому незамещенному апатиту. Результаты приведены в табл. 2.

Исходя из данных таблицы, во всех исследованных образцах преобладает апатит, в решетке которого карбонат-ионы замещают фосфат-ионы (В-тип). Содержание апатита В-типа уменьшается в ряду повышенная стираемость – кариес до 55.6 и 50.2% соответственно. Для кариеса характерно наибольшее содержание разупорядоченного фосфата, для тканей с повышенной стираемостью – наименьшее.

Колебания органической матрицы в области 1400–1800 см⁻¹ обусловлены в основном двумя разновидностями связей: колебания связей -CO-NH-, формирующих белковую основу, и колебания, связанные с боковыми цепочками аминокислот. На рамановских спектрах наиболее ярко проявляются пики белковых связей амидной группировки -CONH₂, имеющей 9 колебательных мод: амид I (1655–1675 см⁻¹), который представляет собой главным образом валентное колебание C = O; амид II (1560 см⁻¹, деформационное колебание

Рис. 4. Разложение суммарного пика PO_4^{3-} в области 940–975 см⁻¹ на три элементарные составляющие (~950, ~960 и ~967 см⁻¹).

Таблица 2.	Доля разупорядоченного	фосфата, фосф	рата В-типа и	кристаллического	незамещенного	апатита в иссл	1e-
дованных об	бразцах зубной ткани						

Образец	Образец Доля разупорядоченного		Доля кристаллического не-	
_	фосфата, %		замещенного апатита, %	
Интактная 13.6		73.3 13.0		
Эмаль	8.5	75.2	16.3	
	18.3	72.0	9.7	
	8.3	80.8	10.9	
	8.5	82.7	8.8	
	18.4	76.1	5.6	
	8.0	79.2	12.7	
	14.7	75.3	10.0	
	21.5	64.3	14.2	
Среднее	13.3	75.4	11.2	
Кариес эмали	29.1	59.3	11.7	
	57.8	33.4	8.8	
	13.6	57.0	29.4	
	7.7	44.6	47.8	
	8.0	56.6	35.5	
Среднее	23.2	50.2	26.6	
Повышенная стираемость	11.3	85.9	2.8	
	5.9	25.4	68.7	
Среднее	8.6	55.6	35.7	

N-H, валентное C-N); амид III (1240–1260 см⁻¹, валентное C-N, деформационное N-H) [1].

С использованием линий 960 и 1240 см⁻¹ (фосфат и органическая матрица соответственно) для образцов с проявлениями кариеса и повышенной стираемости было рассчитано отношение минерал/органическая матрица; на спектрах интактной эмали пиков в области 1240–1260 см⁻¹ от органической составляющей не зафиксировано. Для кариозных тканей среднее соотношение минерал/органическая матрица составило 0.31, а для повышенной стираемости – 0.64.

выводы

1. Все исследованные образцы состоят преимущественно из карбонат-апатита, замещенного по

ЕЖЕГОДНИК-2014, Тр. ИГГ УрО РАН, вып. 162, 2015

В-типу, максимальное количество которого характерно для интактной эмали, минимальное – для кариозной ткани; промежуточное положение занимают ткани с повышенной стираемостью.

2. Кариозные ткани характеризуются наибольшим содержанием разупорядоченного фосфата – замещения А-типа (карбонат-ионы замещают гидроксилионы) или присутствием аморфного фосфата кальция.

3. Для кариозных тканей среднее соотношение минерал/органическая матрица составляет 0.31, а для тканей с повышенной стираемостью – 0.64.

4. При развитии кариеса уменьшается содержание минеральной компоненты (уменьшается линия фосфата) и появляются широкие линии органических составляющих, а также увеличивается люминесцентный фон.

Работа выполнена в Центре коллективного пользования УрО РАН "Геоаналитик" при финан-

совой поддержке УрО РАН, проект № 13-05-022-УМА.

СПИСОК ЛИТЕРАТУРЫ

- Ager III J.W., Nalla R.K., Balooch G., Kim G., Pugach M., Habelitz S., Marshall G.W., Kinney J.H., O'Ritchie R. On the Increasing Fragility of Human Teeth With Age: A Deep-UV Resonance Raman Study // J. Bone Miner. Res. 2006. V. 21, No. 12. P. 1879–1887.
- Tarnowski C.P., Ignelzi Jr M.A., Morris M.D. Mineralization of Developing Mouse Calvaria as Revealed by Raman Microspectroscopy // J. Bone Miner. Res. 2002. V. 17, No. 6. P. 1118–1126.
- Wentrup-Byrne E., Armstrong C. A., Armstrong R.S., Collins B.M. Fourier Transform Raman Microscopic Mapping of the Molecular Components in a Human Tooth // J. Raman Spectroscopy. 1998. V. 28, No. 2–3. P. 151–158.