———— ПЕТРОЛОГИЯ, ГЕОХИМИЯ =

СОСТАВ МАГМАТИЧЕСКИХ ВКЛЮЧЕНИЙ В ПОРФИРОВЫХ ВКРАПЛЕННИКАХ ХРОМШПИНЕЛИ ИЗ АНКАРАМИТОВ ЮЖНОГО УРАЛА

© 2016 г. И. А. Готтман, Е. В. Пушкарев, В. С. Каменецкий, А. В. Рязанцев

Включения ликвидусных минералов или расплава в ранних порфировых вкрапленниках оливина, клинопироксена или хромшпинелида в вулканических породах предоставляют уникальную возможность для изучения состава первичных, наименее фракционированных расплавов и для понимания условий их кристаллизации [7, 11, 12 и др.]. Вкрапленники хромшпинели являются идеальным контейнером для сохранения магматических включений, поскольку практически не подвергаются вторичным преобразованиям, как оливин или клинопироксен, и устойчивы к экзогенным воздействиям [16].

В 2010 г. на Южном Урале в составе ирендыкской вулканогенной свиты Магнитогорской островодужной зоны были установлены клинопироксеновые порфириты, которые по структурным особенностям и составу минералов сходны с эффузивными анкарамитами [3, 4], известными в молодых и современных островодужных системах Пацифики [9, 10]. Породы содержат обильные зональные порфировые вкрапленники магнезиального клинопироксена, количество которого достигает 20– 30%. Впервые для эффузивов ирендыкской свиты в этих породах были установлены микрофенокристы высокохромистого хромшпинелида анкарамитового типа. Породы имеют CaO/Al₂O₃, превышающее 1.0, что является важнейшей диагностической особенностью анкарамитов. Однако большая часть порфиритов характеризуется пониженными по сравнению с анкарамитами содержаниями МgO и повышенными SiO₂ и соответствует базальтам и андезибазальтам. Учитывая высокомагнезиальный состав порфировых вкрапленников клинопироксена и хромшпинелида в этих породах, можно предположить, что они не соответствуют составу первичного расплава, а являются продуктами его дифференциации или смешения с другим, более эволюционированным расплавом. Поэтому поиск наиболее примитивных, первичных вулканогенных пород в ирендыкской свите является актуальной проблемой.

Такие примитивные вулканогенные породы были обнаружены А.В. Рязанцевым (ГИН РАН, Москва) в составе меланжа Западно-Магнитогорской зоны в районе деревни Абзаково Учалинского района Башкирии. Они представлены клинопироксеновыми порфиритами с экстремально высоким CaO/Al₂O₃ > 2 и MgO, достигающим 18 мас. % (табл. 1). По химическому составу и геохимиче-

Компонент	Номер пробы									
	Пе1465	Пе1466	Пе1466/1	Пе1467	Пе1469-1	Пе1492	Пe1470	Пе1491		
SiO ₂	46.08	45.43	45.67	46.14	46.76	43.89	58.85	60.08		
TiO ₂	0.16	0.17	0.19	0.18	0.20	0.15	0.36	0.37		
Al_2O_3	6.02	6.60	5.60	7.01	7.72	6.24	14.39	15.38		
Fe ₂ O ₃	5.41	4.74	4.01	3.98	3.34	5.95	2.44	3.87		
FeO	3.50	4.20	7.30	5.00	5.90	2.80	3.50	1.80		
MnO	0.19	0.20	0.23	0.24	0.21	0.29	0.08	0.07		
MgO	18.44	17.70	14.37	16.60	17.29	17.68	3.88	2.24		
CaO	16.50	16.79	20.88	17.08	13.40	20.01	7.29	6.23		
Na ₂ O	0.10	0.10	0.16	0.11	0.22	0.07	4.95	5.78		
K ₂ O	0.04	0.01	0.04	0.01	0.88	0.00	2.24	2.93		
P_2O_5	0.12	0.11	0.10	0.13	0.13	0.12	0.22	0.23		
П.п.п.	3.40	3.70	1.50	3.50	3.70	3.10	1.80	1.20		
Сумма	100.42	100.30	100.83	100.59	100.43	100.67	100.00	100.19		
Fe/(Fe + Mg)	0.20	0.21	0.30	0.22	0.22	0.20	0.45	0.57		
CaO/Al ₂ O ₃	2.74	2.54	3.73	2.44	1.74	3.21	0.51	0.41		

Таблица 1. Представительные химические анализы анкарамитов Западно-Магнитогорской зоны Южного Урала

Примечание. Пробы анкарамитов: Пе1465, 1466, 1466/1, 1467, 1469-1. Пробы андезитов: Пе1470, 1491. Анализы выполнены рентгенфлюоресцентным методом в ЦКП "Геоаналитик" в ИГГ УрО РАН.

ским особенностям эти порфириты соответствуют наиболее примитивным анкарамитам островных дуг, приближаясь по составу к клинопироксенитам [6]. Анкарамиты геологически тесно ассоциированы с афировыми андезитами или амфиболовыми порфиритами (см. табл. 1), образующими дайки или фрагменты лавовых потоков среди серпентинитов. Взаимоотношения между анкарамитами и андезитами имеют сложный и неоднозначный характер. Было установлено, что анкарамиты секутся дайками андезитов, которые содержат ксенолиты анкарамитов. Были получены и противоположные наблюдения о наличие ксенолитов андезитов в анкарамитах. Кроме того, несмотря на то что наблюдаемые контакты анкарамитов и андезитов выглядят резкими, видно, что вкрапленники хромдиопсида, типичные для анкарамитов, встречаются в эндоконтактовой зоне андезитов и, напротив, микровкрапленики амфибола из андезитов встречаются в приконтактовой зоне анкарамитов. Эти факты, как нам кажется, могут указывать на то, что и андезитовый, и анкарамитовый расплавы существовали одновременно и взаимодействовали. Поэтому изучение твердофазных и расплавных включений в ранних вкрапленниках анкарамитов представляет большой интерес для интерпретации состава первичного расплава и особенностей его кристаллизации. Для решения этой задачи мы использовали порфировые вкрапленники хромшпинелида из анкарамитов, размером до 2 мм, который характеризуется высокомагнезиальным (Mg# = 0.5-0.6) и высокохромистым ($Cr_2O_3 > 60\%$) составом.

Под бинокулярным микроскопом нами было отобрано несколько сотен зерен хромита, которые были закреплены в эпоксидной смоле, отшлифованы и отполированы. Для увеличения количества вскрытых включений нами производилось несколько последовательных процедур шлифовки и полировки с промежуточным изучением состава включений. Морфология и фазовый состав минералов определялись на электронном сканирующем микроскопе JEOL 6390LV с ЭДС-приставкой INCA Energy 450 X-Max 80 фирмы Oxford Instruments и методом электронно-микрозондового анализа на рентгеновском микроанализаторе CAMECA SX 100 (ЦКП "Геоаналитик" ИГГ УрО РАН, аналитики В.В. Хиллер и С.П. Главатских). Анализы осуществлялись с ускоряющим напряжением 15 кВ и силой тока 30 нА при диаметре пучка электронов на образце 1-3 мкм; были использованы сертифицированные стандартные образцы: диопсид, ортоклаз, рутил, Cr₂O₃, Fe₂O₃; длительность измерения интенсивности на пике аналитических линий – 10 с, на фоне с каждой из сторон от пика – по 5 с.

Хромшпинелид содержит твердофазные идиоморфные включения оливина, клинопироксена, железоплатиновых сплавов [13], а также многочисленные раскристаллизованные расплавные включения (рис. 1). Форма расплавных включений приближается к сферической, что отличает их от полиминеральных агрегатов, заполняющих октаэдрические пустоты в хромшпинелидах и интерпретируемых как негативные кристаллы [1, 5]. Для определения состава расплава, захваченного кристаллизующимся хромшпинелидом, раскристаллизованные расплавные включения были нагреты до полной гомогенизации при T = 1300°С и летучести кислорода, соответствующей буферу QFM, и закалены в стекло. Состав этого стекла оказался весьма сходным с валовым составом изученных анкарамитов [13, 15], что является независимым доказательством кристаллизации хромшпинелида и минералов группы платины из анкарамитового расплава.

Твердофазные включения, как правило, представлены оливином или клинопироксеном, или сростками кристаллов железоплатиновых сплавов с подчиненными им мелкими зернами сульфидов Ru и Os. Минералы твердофазных включений обладают собственной морфологией, независимой от симметрии минерала-хозяина (рис. 2). Структурные признаки свидетельствуют, что эти минералы были в твердом состоянии в момент их захвата кристаллизующимся хромшпинелидом. Состав и условия магматической кристаллизации минералов элементов платиновой группы из уральских анкарамитов подробно описаны в опубликованной работе [13] и здесь не рассматриваются.

Уникальной находкой являются обнаруженные в порфировых вкрапленниках хромшпинелида идиоморфные включения оливина размером до 40-50 мкм (см. рис. 2). До этого считалось, что оливин отсутствует в вулканогенных породах ирендыкской свиты [8]. Наша находка свидетельствует о том, что оливин кристаллизуется на ликвидусе анкарамитов и входит в раннюю ассоциацию минералов наравне с вкрапленниками хромдиопсида и хромшпинелида. Об этом косвенно свидетельствуют часто встречающиеся в анкарамитах хлорит-серпентиновые псевдоморфозы, обладающие габитусом кристаллов оливина. По составу оливин включений относиться к форстериту с железистостью 0.08-0.09 и содержанием СаО около 0.25%, что делает его сходным с форстеритом из дунитов Платиноносного пояса Урала [2].

Твердофазные включения клинопироксена размером до 100 мкм (см. рис. 2) обладают короткопризматической формой с закругленными ребрами. Изучение состава минерала показывает, что он обладает существенно более широкими вариациями по сравнению с порфировыми вкрапленниками клинопироксена в анкарамитах. Например, в хромшпинелиде может одновременно встречаться низкоглиноземистый хромдиопсид, идентичный анкарамитовому, и высокоглиноземистый клинопироксен, который типичен для ирендыкских базальтов и андезибазальтов, но в анкарамитах не встре-

Рис. 1. Микрофотографии магматических включений в порфировых вкрапленниках хромшпинелидов из анкарамитов, снятые в обратнорассеянных электронах на сканирующем электронном микроскопе JEOL6390.

а-е – твердофазные магматические включения: железоплатиновые сплавы и сульфиды Os, Ru, Rh, Ni [13, 15] (a, б); включения оливина (в, г); включения клинопироксена (д, е). ж – расплавные раскристаллизованные включения в порфировом вкрапленнике хромшпинелида. з – внутренняя строение одного из раскристаллизованных расплавных включений. Номера в скобка соответствуют анализам в табл. 3. Срх – клинопироксен, Amp – амфибол, Opx – ортопироксен, Alb – альбит, Qtz – кварц, CrSp – хромшпинелид, Ol – оливин.

ЕЖЕГОДНИК-2015, Тр. ИГГ УрО РАН, вып. 163, 2016

Рис. 2. Состав клинопироксена.

1 – твердофазные включения в порфировых вкрапленниках хромшпинелида из анкарамитов, 2 – раскристаллизованные расплавные включения в хромшпинелидах, 3 – порфировые вкрапленники и клинопироксены основной массы в анкарамитах Западно-Магнитогорской зоны, 4 – порфировые вкрапленники и клинопироксены основной массы в анкарамитах ирендыкской свиты.

чается. Мы рассматриваем это явление как признак смешения двух расплавов – анкарамитового и андезитового [6].

Раскристаллизованные расплавные включения чаще всего имеют округлую форму. Размер включений варьирует от 10 до 200 мкм. Обычно наблюдается одно, реже два или три включения разного размера. Однако, в редких случаях, зерна хромшпинелида содержат несколько десятков включений (см. рис. 1ж). Все включения почти полностью раскристаллизованы. Среди минералов обычно присутствуют клинопироксен, амфибол, мелкие включения ортопироксена в амфиболе, хлорит, иногда кислый плагиоклаз, калиевый полевой шпат, сульфиды железа и стекло кислого состава.

Клинопироксен из раскристаллизованных включений характеризуется широкими вариациями железистости от 0.07 до 0.18 (табл. 4) и существенно большей дисперсией содержаний Al₂O₃, Cr₂O₃, Na₂O и других компонентов по сравнению с порфировыми вкрапленниками (см. рис. 2). При этом пироксены с минимальным уровнем глинозема на диаграммах располагаются на анкарамитовом тренде, но встречаются минералы, которые при той же железистости содержат в 2-3 раза больше глинозема. Глиноземистые клинопироксены приурочены к включениям, в которых присутствуют в значительных количествах амфибол, хлорит, а иногда плагиоклаз и калиевый полевой шпат. То есть валовой состав этих включений, скорее всего, тоже является глиноземистым. Хром в этих пироксенах тоже по-

Таблица 2. Состав минералов твердофазных включений во вкрапленниках хромшпинелидов, мас. %

Компонент	1	2	3	4	5	6
SiO ₂	40.12	41.17	54.10	54.20	53.50	51.80
TiO ₂	0	0	0	0	0	0
Al_2O_3	0	0	0.50	0.70	0.80	2.50
Cr_2O_3	1.38	0	2.00	1.90	1.20	1.30
FeO*	7.96	8.86	2.90	3.40	5.20	6.00
MnO	0.38	0	0	0	0	0
MgO	49.91	49.97	19.50	18.80	17.90	17.40
CaO	0.26	0	21.40	21.80	21.20	21.60
Na ₂ O	0	0	0	0	0	0
K ₂ O	0	0	0	0	0	0
Сумма	100.00	100.00	100.5	100.8	99.9	100.7
Fe/(Fe + Mg)	0.08	0.09	0.07	0.09	0.14	0.16

Примечание. 1–2 – оливин, 3–6 – клинопироксен. FeO* – все железо в виде FeO. Анализы выполнены: 1, 3–6 – на электроном микроскопе JEOL 6390LV с ЭДСприставкой; 2 – на рентгеновском микроанализаторе CamecaSX-100.

вышенный, но этот факт трудно интерпретировать, поскольку минералом-хозяином включений является хромшпинелид и мы не можем исключить влияние его матрицы.

Амфибол почти всегда образует идиоморфные кристаллы внутри включений (см. рис. 23), которые часто растут от края до края включения. Согласно классификации [14] изученные амфиболы можно подразделить на эденит, магнезиальную роговую обманку, актинолит и тремолит. Два последних нарас-

ГОТТМАН и др.

	1	1	1 1		1	//	
Компонент	1	2	3	4	5	6	7
SiO ₂	54.13	51.91	52.04	49.23	69.35	64.75	31.97
TiO ₂	0	0	0	0	0	0	0
Al ₂ O ₃	2.58	2.48	8.91	12.38	20.19	18.32	14.72
Cr_2O_3	0.95	1.30	0.99	1.59	0	0	0
FeO	0	0	0	0	0	0	14.39
MnO	10.67	5.89	5.95	5.13	0	0	0.20
MgO	30.00	17.11	20.30	19.86	0	0.33	23.92
CaO	1.67	21.31	11.81	10.40	0	0	0.17
Na ₂ O	0	0	0	1.41	10.46	0.39	0.01
K ₂ O	0	0	0	0	0	16.19	0.02
Сумма	100.00	100.00	100.00	100.00	100.00	99.98	85.41
Fe/(Fe + Mg)	0.16	0.16	0.14	0.12	_	_	0.25

Таблица 3. Состав минералов из расплавного раскристаллизованного включения (см. рис. 1з), мас. %

Примечание. 1 – ортопироксен, 2 – клинопироксен, 3–4 – амфибол, 5 – альбит, 6 – ортоклаз, 7 – хлорит. FeO* – все железо в форме FeO. Анализы выполнены: 1–5 – на электроном микроскопе JEOL 6390LV с ЭДС-приставкой, 6–7 – на рентгеновском микроанализаторе CamecaSX-100.

Таблица 4. Состав клинопироксена из расплавных раскристаллизованных включений во вкрапленниках хромшпинелидов, мас. %

Компонент	1	2	3	4	5	6	7	8	9
SiO ₂	53.24	51.15	50.89	51.70	52.05	51.16	52.19	51.69	51.89
TiO ₂	0.05	0.2	0.33	0.33	0.24	0.34	0.12	0.15	0.05
Al_2O_3	0.87	3.14	4.95	3.21	4.02	3.82	2.83	3.18	1.54
Cr_2O_3	0.80	1.63	2.18	1.82	1.86	1.53	1.28	1.32	1.48
FeO	3.74	4.36	4.47	4.38	4.91	5.17	5.83	6.48	6.35
MnO	0.06	0.13	0.16	0.19	0.19	0.25	0.16	0.14	0.41
MgO	16.46	17.46	18.03	16.82	16.67	17.19	17.04	16.73	14.89
CaO	25.31	21.56	18.51	21.6	20.52	20.71	19.88	20.51	22.24
Na ₂ O	0.01	0.21	0.47	0.16	0.25	0.20	0.23	0.14	0.35
K ₂ O	0.01	0.01	0.07	0.01	0.26	0.05	0.01	0.01	0.02
Сумма	100.55	99.85	100.07	100.22	100.97	100.41	99.57	100.33	99.2
Fe/(Fe+Mg)	0.10	0.11	0.12	0.13	0.14	0.14	0.15	0.16	0.18

Примечание. FeO* – все железо в форме FeO. Анализы выполнены на рентгеновском микроанализаторе CamecaSX-100.

тают с краев на кристаллы клинопироксена, эденита и магнезиальной роговой обманки и, скорее всего, отражают стадию переуравновешивания минеральных парагенезисов включений с понижением температуры в присутствие водного флюида. Вероятно, что актинолит и тремолит равновесны с хлоритом, который также замещает более ранние темноцветные минералы. Для включений богатых амфиболом и хлоритом характерно присутствие альбита и реже калиевого полевого шпата (см. табл. 3).

Таким образом, основываясь на составе минералов из раскристаллизованных расплавных включений и их объемных соотношениях, можно сделать вывод, что вкрапленники хромшпинелида содержат и высококальциевые, магнезиальные включения, сходные по составу с анкарамитами, и более глиноземистые, и железистые включения, приближающиеся к базальтам или андезибазальтам ирендыкской свиты. То есть высказанный тезис об одновременном существовании двух типов расплава находит подтверждение. Составы клинопироксенов из твердофазных и раскристаллизованных включений также подтверждают это предположение, поскольку часть этих пироксенов явно принадлежит анкарамитовому типу и характеризуется низкими содержаниями глинозема, а другая часть, существенно более глиноземистая, принадлежит андезибазальтовому типу расплавов. Несомненно, что уникальной особенностью анкарамитов является присутствие включений в хромшпинелиде минералов элементов платиновой группы и оливина, который соответствует форстериту платиноносных дунитов. Этот факт делает предположение о родоначальной роли анкарамитовых расплавов в образовании дунитклинопироксенитовых (±габбро) комплексов Урало-Аляскинского типа весьма обоснованным.

Работа выполнена при финансовой поддержке РФФИ № 16-05-00508-а и инициативного проекта УрО РАН № 15-18-5-24.

ЕЖЕГОДНИК-2015, Тр. ИГГ УрО РАН, вып. 163, 2016

СПИСОК ЛИТЕРАТУРЫ

- 1. Дмитренко Г.Г., Мочалов А.Г. О происхождении включений водосодержащих силикатов в платиноидных минералах и хромшпинелидах ультрамафитов // Докл. АН СССР. 1989. Т. 307, № 5. С. 1207–1211.
- Пушкарев Е.В. Петрология Уктусского дунит-клинопироксенит-габбрового массива (Средний Урал). Екатеринбург: УрО РАН, 2000. 296 с.
- Пушкарев Е.В. Интрузивные и эффузивные анкарамиты Урала и проблема формирования дунит-клинопироксенит-габбровых комплексов Урало-Аляскинского типа. Магматизм и метаморфизм в истории Земли. Екатеринбург: ИГГ УрО РАН, 2010. Т. 1. С. 159–160.
- 4. Пушкарев Е.В., Готтман И.А., Прибавкин С.В., Косарев А.М. Эффузивные и субвулканические анкарамиты девонских островодужных свит Урала: вещественная характеристика, генезис и геологические следствия // Тектоника, рудные месторождения и глубинное строение земной коры. Екатеринбург: ИГГ УрО РАН, 2011. С. 219–223.
- Пушкарев Е.В., Каменецкий В.С., Морозова А.В., Хиллер В.В., Главатских С.П., Родеманн Т. Онтогения рудных хромшпинелидов и состав включений как индикаторы пневматолито-гидротермального образования платиноносных хромититов массива Кондер (Алданский щит) // Геология рудных месторождений. 2015. Т. 57, № 5. С. 394–423.
- Пушкарев Е.В., Рязанцев А.В., Готтман И.А. Субвулканические клинопироксениты в меланже Западно-Магнитогорской зоны на Южном Урале: первые данные // Колчеданные месторождения – геология поиски, добыча и переработка руд. Екатеринбург: ИГГ УрО РАН, 2013. С. 120–123.
- Соболев А.В. Включения расплавов в минералах как источник принципиальной петрологической информации // Петрология. 1996. Т. 4, № 3. С. 228–239.

- 8. *Фролова Т.И, Бурикова И.А.* Геосинклинальный вулканизм. М.: МГУ, 1977. 279 с.
- 9. *Barsdell M., Berry R.F.* Origin and evolution of primitive island-arc ankaramites from Western Epi, Vanuatu // Journal of Petrology. 1990. 31. P. 747–777.
- 10. *Della-Pasqua F.N., Varne R.* Primitive ankaramitic magmas in volcanic arcs: a melt-inclusion approach // The Canadian Mineralogist. 1997. 35. P. 291–312.
- Frenzzotti M.L. Silikate-melt inclusions in magmatic rocks: applications in petrology // Lithos. 2001. V. 55. P. 27–41.
- 12. *Kamenetsky V.S.* Methodology for the study of melt inclusions in Cr-spinel, and implications for parental melts of MORB from FAMOUS area // Earth and Planetary Science Letters. 1996. V. 142. P. 479–486.
- Kamenetsky V.S., Park J-W., Mungall J.E., Pushkarev E.V., Ivanov A.I., Kamenetsky M.B., Yaxley G.M. Crystallization of platinum-group minerals from silicate melts: Evidence from Cr-spinel – hosted inclusions in volcanic rocks // Geology. 2015. V. 43, No. 10. P. 903–906.
- Leake B.E., Woolley A.R., Arps C.E.S., Birch W.D. et al. Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the International mineralogical association, commission on new minerals and mineral names // Canadian Mineralogist. 1997. V. 35. P. 219–246.
- Pushkarev E.V., Kamenetsky V., Gottman I., Yaxley G. The PGM-bearing volcanic ankaramite (Urals, Russia): bridging ankaramite parental magmas and the Ural-Alaskan-type intrusions // 12-th International Platinum Symposium. Yekaterinburg: IGG UB RAS, 2014. P. 204–205.
- Shimizu K., Komiya T., Hirose K., Shimizu N., Matuyama S. Cr-spinel, an excellent micro-container for retaining primitive meltsimplications for a hydrous plume origin for komatiites) // Earth and Planetary Science Letters. 2001. V. 189. P. 177–188.