ПЕТРОЛОГИЯ, ГЕОХИМИЯ

РЗЭ-СИСТЕМАТИКА ОСАДОЧНОГО МАТЕРИАЛА ДРЕЙФУЮЩИХ ЛЬДОВ ИЗ РАЙОНА ПЛАТО ЕРМАК И АЭРОЗОЛЕЙ ПРИВОДНОГО СЛОЯ АТМОСФЕРЫ ЗАПАДНОГО СЕКТОРА РОССИЙСКОЙ АРКТИКИ

© 2016 г. В. П. Шевченко, А. В. Маслов

Изучение процессов транспортировки осадочного вещества в Арктике позволяет как глубже понять процессы современной седиментации, так и выполнить экологическую оценку акватории, оказывающей колоссальное воздействие на природную среду планеты [2, 6–11 и др.]. Главная траектория ледовых потоков в Евразийской части Северного Ледовитого океана проходит от Чукотского и Восточно-Сибирского морей на востоке до пролива Фрама на западе. Ежегодно последний достигает ~20% льда всего Арктического бассейна, наиболее важными генераторами льда при этом являются море Лаптевых и часть Восточно-Сибирского моря [2, 10].

Исследованный нами рассеянный во льду осадочный материал (IRS) собран в ARK-XX/3 рейсе НИС "Polarstern" в сентябре 2004 г. в районе плато Ермак, расположенном к северу от Шпицбергена [7, 12]. На 6 станциях (рис. 1) он присутствует в виде криоконитовых пеллет, распределенных в слое льда толщиной 1–2 см на поверхности торосов. Пробы IRS состоят в основном из тонкозернистого материала, содержание фракции 63 мкм в котором иногда составляет более 80% [12]. Присут-

Рис. 1. Станции отбора проб для исследования IRS в районе плато Ермак.

1 – станция и ее номер.

ствие в пробе 1 существенной доли песчаной фракции указывает на участие в формировании IRS донного льда или полного промерзания мелководных участков шельфа. В остальных пробах осадочный материал образован, вероятно, вследствие захвата взвеси всплывающими кристаллами льда.

Основными минеральными компонентами IRS в районе плато Ермак являются кварц (от 17 до ~37%), полевые шпаты (до 21%), слюда и глинистые минералы (~20% и более) [12]. В западной части плато Ермак (станции 1, 2, 4 и 7) в составе осадочного материала диагностированы обломки вулканических стекол. Суммарное содержание диатомовых, спор и растительных компонентов в пробах составляет от 3.7 до 15.9% [11]. Среди тяжелых минералов определены пироксены и амфиболы (доминирующие компоненты), эпидот, гранаты, Fe-гидроксиды и черные рудные. В пробах, отобранных на станциях 1 и 2, преобладают Fe-гидроксиды.

Содержания редких и рассеянных элементов в IRS определены методом ICP-MS в ИГГ УрО РАН (аналитики – Д.В. Киселева, Н.Н. Адамович, Н.В. Чередниченко, О.А. Березикова и Л.К. Дерюгина) и приведены в табл. 1. Точность анализа зави-

Таблица 1. Содержание РЗЭ (г/т) в транспортируемом дрейфующими льдами осадочном материале (IRS, район плато Ермак)

Компонент	Проба								
(г/т)	IRS-1	IRS-2	IRS-3	IRS-4	IRS-5	IRS-6	IRS-7		
La	25.04	21.78	29.15	21.43	21.99	26.43	26.18		
Ce	53.58	43.99	54.91	46.12	46.06	56.29	50.93		
Pr	6.41	5.37	6.82	5.59	5.65	6.43	6.32		
Nd	24.54	19.6	25.26	21.41	21.11	24.76	23.48		
Sm	4.78	3.77	4.56	4.29	4.18	4.93	4.42		
Eu	1.24	1.03	1.08	1.11	1.11	1.22	1.05		
Gd	5.01	4.13	4.61	4.77	4.42	5.30	4.64		
Tb	0.66	0.50	0.59	0.65	0.58	0.67	0.57		
Dy	3.89	2.9	3.39	3.58	3.44	3.80	3.30		
Ho	0.77	0.62	0.67	0.74	0.67	0.78	0.65		
Er	2.22	1.77	1.91	2.09	2.00	2.21	1.79		
Tm	0.33	0.26	0.28	0.30	0.30	0.33	0.27		
Yb	2.42	1.89	1.75	2.26	1.97	2.10	1.73		
Lu	0.33	0.28	0.27	0.29	0.29	0.34	0.26		

Примечание. Номера проб соответствуют их номерам на рис. 1.

Рис. 2. Схема отбора проб аэрозолей в Российской Арктике в рамках экспедиции SPASIBA-91 [5].

1 – Белое море, район между п-овами Кольским и Каниным; 2 – Баренцево море, район между о-вом Колгуев и м. Русский Заворот; 3 – западная часть Карского моря; 4 – северная часть Обской губы; 5 – западная часть моря Лаптевых в окрестностях Северной Земли; 6 – море Лаптевых у восточного окончания п-ова Таймыр; 7 – море Лаптевых к востоку от дельты р. Лены; 8–10 – дельта р. Лены.

села от концентрации конкретного элемента и составляла от 3 до 20–50 отн.% (для очень низких, на уровне предела обнаружения, содержаний).

Пробы аэрозолей собраны сетевым методом в августе-сентябре 1991 г. в рамках российскофранцузской экспедиции SPASIBA над Баренцевым и Карским морями и морем Лаптевых на борту НИС "Яков Смирницкий" [5] (рис. 2). Состав индивидуальных аэрозольных частиц (грубая, > 1 мкм, нерастворимая в воде фракция) в пробах изучен с помощью рентгеновского микрозондового анализа на микроанализаторе JXA-733 (Jeol, Япония) Антверпенского университета (Бельгия) [5].

В каждом образце в автоматическом режиме проанализировано ~400 частиц размером от 0.4 до 15 мкм. Во всех пробах основным компонентом являются растительные волокна, пыльца и споры; источником их является суша, расположенная в 20–120 км от мест пробоотбора. Дающие отражение рентгеновского сигнала при исследовании на микрозонде компоненты проб представлены алюмосиликатами, кварцем, кремне-железистыми или железо-кремнистыми частицами и сферами сгорания (пепловыми частицами). Алюмосиликаты – это развеваемые ветром почвенные частицы размером 1–5 мкм. Железо-кремнистые или кремнежелезистые частицы, скорее всего, являются зернами кварца, покрытыми гидроксидами железа. Предполагается, что вариации содержания алюмосиликатов и кварца в пробах вызваны изменчивостью минерального состава почв прилегающей суши. По данным [3] в пробах преобладает кварц (47–70%), а количество полевых шпатов составляет от 7 до 17%, что позволяет предполагать их сильное выветривание в почвах тундр и лесотундр. Пепловые частицы, присутствующие во всех исследованных пробах, обогащены Fe, P, C1, Ni, Cu, Cr, Zn, Ca, Mn и Sb.

Содержание редких и рассеянных элементов в пробах установлено методом ИНАА в ГЕОХИ РАН (в табл. 2 приведены только содержания редкоземельных элементов). На основе расчета коэффициентов обогащения показано, что химические элементы в исследованных пробах принадлежат двум группам [5] – коровым и антропогенным. Первая группа объединяет Na, Mg, Al, K, Ca, Sc, Mn, Fe, Co, Ni, As, Rb, Cs, Ba, редкоземельные элементы (РЗЭ), Hf, Ta, Th и U. Вторая включает Cr, Cu, Zn, Se, Br, Ag, Cd, Sb, W, Au и Pb.

Сумма РЗЭ в пробах IRS из района плато Ермак варьирует от ~108 до ~136 г/т. Среднее значение Σ РЗЭ составляет 123 ± 11 г/т (в РААЅ этот параметр равен 183 г/т [4]). Минимальная величина (La/Yb)_{РААЅ} в исследованных нами пробах составляет 0.70, тогда как максимальная заметно выше (1.23). Отношение (La/Sm)_{РААЅ} варьирует от 0.74 до

Компонент,	Проба									
г/т	1	2	3	4	5	6	8	9	10	
La	12.10	19.10	10.80	10.30	5.60	0.57	_	3.70	10.70	
Ce	27.00	38.90	22.20	16.20	12.00	7.30	14.00	13.20	19.00	
Pr	_	_	_	_	_	_	_	_	_	
Nd	11.80	17.00	8.20	7.10	3.80	_	5.20	_	8.40	
Sm	1.90	3.10	1.50	1.20	0.74	0.40	0.91	_	1.23	
Eu	0.46	0.75	0.35	0.36	0.18	0.06	0.29	0.13	0.32	
Gd	1.35	2.20	1.20	0.85	0.47	_	0.54	_	0.90	
Tb	0.24	0.39	0.22	0.14	0.09	-	0.10	_	0.16	
Dy	_	_	_	_	_	_	_	_	_	
Ho	_	_	_	_	_	_	_	_	_	
Er	_	_	_	_	_	_	_	_	-	
Tm	0.10	0.17	0.11	0.01	0.03	_	0.05	_	0.08	
Yb	0.55	0.91	0.58	0.26	0.16	_	0.25	_	0.40	
Lu	0.09	0.15	0.08	0.03	0.02	_	0.04	_	0.06	

Таблица 2. Содержание РЗЭ (г/т) в аэрозолях из проводного слоя атмосферы разных районов западного сектора Российской Арктики [5]

Примечание. Прочерк – содержание не определено. Номера проб соответствуют их номерам на рис. 2.

Рис. 3. Нормированные по PAAS спектры распределения РЗЭ в пробах IRS, отобранных в районе плато Ермак.

0.94. Среднее значение параметра (Gd/Yb)_{РААS} равно 1.40 ± 0.15 (минимум – 1.23, максимум – 1.60). Средняя величина европиевой аномалии положительная и составляет 1.15 ± 0.05 при вариации от 1.08 до 1.22. Исходя из приведенных на рис. 3 нормированных по PAAS спектров распределения P3Э в IRS из района плато Ермак, отобранные нами пробы принадлежат к достаточно однородной совокупности.

Средняя величина $\sum P3Э$ в пробах аэрозолей составляет 44 ± 21 г/т. В пробах, отобранных в дельте р. Лены, этот параметр варьирует от ~21 до ~41 г/т. Примерно такие же значения суммы P3Э характерны для западной части моря Лаптевых (23.1 г/т) и северной части Обской губы (36.5 г/т). Аэрозоли, проба которых была собрана в западной части Карского моря, имеют несколько бо́льшую величину $\sum P3Э$ (45.2 г/т), тогда как к северу от Горла Белого моря и в районе между о-вом Колгуев и м. Русский Заворот суммарные содержания P3Э наиболее высокие (55.6 и 82.7 г/т соответственно).

На рис. 4 показаны нормированные на PAAS спектры распределения РЗЭ в пробах аэрозолей. Их параметры для проб, отобранных в разных районах Российской Арктики, в заметной степени различаются. Так, пробы из северной части Горла Белого моря (проба 1) и окрестностей о-ва Колгуев (проба 2) характеризуются достаточно близкими значениями всех четырех описывающих геометрию спектров отношений: (La/Yb)_{PAAS} - 1.62 и 1.55; (La/Sm)_{PAAS} – 0.94 и 0.91; (Gd/Yb)_{PAAS} – 1.46 и 1.44; Еи/Еи* – 1.34 соответственно. Аэрозоли из западной части Карского моря (проба 3) обладают заметно меньшей величиной (La/Yb)_{PAAS} (1.37), также ниже для них и другие параметры, например значение (Gd/Yb)_{РААЅ} равно 1.23, а европиевая аномалия относительно среднего постархейского австралийского сланца составляет 1.22. Иные характеристики присущи аэрозолям, собранным на севере Обской губы и в западной части моря Лаптевых (пробы 4 и 5). Параметр (La/Yb)_{РААS} для них примерно в 1.6 раза выше, чем в пробах 1 и 2. Вели-

Рис. 4. Нормированные по PAAS спектры распределения РЗЭ в пробах аэрозолей. Пояснения см. в тексте.

чина (Gd/Yb)_{РААS} составляет 1.95 и 1.75 соответственно, а европиевая аномалия достигает значений 1.66 и 1.42. Выше этот параметр только в аэрозолях, собранных в одной из точек наблюдений в дельте р. Лены (1.93, проба 8). Для последнего района, несмотря на ограниченность данных, наблюдается определенная гетерогенность РЗЭ-систематики аэрозолей. Так, для пробы 10 величина (Eu/Eu*)_{РААS} составляет 1.42, а для пробы 8 данный параметр почти в 1.4 раза выше.

Сказанное хорошо иллюстрирует диаграмма (Gd/Yb)_N-Eu/Eu^{*1} (рис. 5). Фигуративные точки состава IRS, обладающие значениями Eu/Eu* < 0.80, образуют на ней достаточно компактное поле. К этому полю тяготеет точка аэрозолей, собранных в западной части Карского моря (проба 3). Все остальные пробы аэрозолей имеют более высокие, чем образцы IRS, величины Eu/Eu*, а пробы из северной части Обской губы (№ 4) и западной части моря Лаптевых (№ 5) отличаются и более высокими величинами параметра (Gd/Yb)_N. Интересно отметить, что все исследованные нами пробы по РЗЭсистематике $(Gd/Yb)_N = 1.24$, Eu/Eu* = 1.03 заметным образом отличаются от толеитовых базальтов трапповой формации Сибири, что, вероятно, свидетельствует о дальнем атмосферном переносе минеральных аэрозолей из разных районов Северной Евразии [5].

Очевидно, что до того момента, как мы будем иметь те или иные представления о балансе материала, выступающего источником IRS в дрейфующих льдах Российской Арктики, сделать какиелибо выводы относительно вклада аэрозолей в приводном слое атмосферы в состав IRS практически

Рис. 5. Положение точек состава IRS из района плато Ермак и проб аэрозолей Российской Арктики на диаграмме (Gd/Yb)_N–Eu/Eu*.

1 – IRS из района плато Ермак; 2 – Белое море, район между полуостровами Кольским и Каниным; 3 – Баренцево море, район между о-вом Колгуев и м. Русский Заворот; 4 – западная часть Карского моря; 5 – северная часть Обской губы; 6 – западная часть моря Лаптевых в окрестностях Северной Земли; 7 – дельта р. Лены. Сведения по РЗЭ-систематике сибирских траппов заимствованы из [1].

¹ При построении этой диаграммы содержания РЗЭ нормированы по ходриту [4].

ЕЖЕГОДНИК-2015, Тр. ИГГ УрО РАН, вып. 163, 2016

невозможно. В то же время уже сейчас можно видеть, что РЗЭ-систематика IRS из района плато Ермак и аэрозолей разных районов Евразийской части Арктики существенным образом различается. Так, очевидно, что если источником всего объема IRS из района плато Ермак выступали бы только переносимые ветром в приводном слое атмосферы продукты преимущественно физического разрушения базальтов плато Путорана, то систематика редкоземельных элементов в IRS была бы иной, чем мы видим сейчас. Весьма отличную от IRS РЗЭ-систематику имеют и аэрозоли над западной частью моря Лаптевых или над северной частью Обской губы. При существенной доле такого материала в составе IRS РЗЭ-систематика последнего была бы также отличной как от настоящей, так и от систематики платобазальтов. Это позволяет предполагать, что основная доля осадочного материала, обнаруженного в дрейфующих льдах в районе плато Ермак, была захвачена льдом в момент его формирования в шельфовых морях Сибирской Арктики вследствие захвата взвеси всплывающими кристаллами льда [2, 9, 10].

Продолжение исследований в данном направлении может дать в руки исследователей весьма действенный инструмент для распознавания источников осадочного материала в дрейфующих льдах Российского сектора Арктического бассейна.

Авторы признательны экипажу НИС "Polarstern", Р. Штайну и Н.А. Кукиной, за помощь в отборе проб, академику А.П. Лисицыну – за поддержку. Рисунки к статье выполнены Н.С. Глушковой.

Исследования проведены в рамках государственного задания Института океанологии им. П.П. Ширшова РАН (проект № 0149-2014-0026) и при финансовой поддержке проекта УрО РАН 15-15-5-4.

СПИСОК ЛИТЕРАТУРЫ

1. Иванов А.В. Внутриконтинентальный базальтовый магматизм (на примере мезозоя и кайнозоя Сибири). Автореф. дис. ... докт. геол.-мин. наук. Иркутск: ИЗК СО РАН, 2011. 31 с.

- Лисицын А.П. Новый тип седиментогенеза в Аркти-2. ке - ледовый морской, новые подходы к исследованию процессов // Геология и геофизика. 2010. Т. 51, № 1. C. 18–60.
- 3. Серова В.В., Горбунова З.Н. Минеральный состав почв, аэрозолей, взвешенного вещества и донных осадков устьевой части реки Лены и моря Лаптевых // Океанология. 1997. Т. 37, № 1. С. 131–135. *Тейлор С.Р., МакЛеннан С.М.* Континентальная ко-
- 4. ра, ее состав и эволюция. М.: Мир, 1988. 376 с.
- 5. Шевченко В.П., Лисицын А.П., Купцов В.М., Ван-Малдерен Г., Мартэн Ж.-М., Ван-Грикен Р., Хуан В.В. Состав аэрозолей в приводном слое атмосферы над морями западного сектора Российской Арктики // Океанология. 1999. Т. 39, № 1. С. 142–151.
- 6. Шевченко В.П., Лисицын А.П., Полякова Е.И., Детлеф Д., Серова В.В., Штайн Р. Распределение и состав осадочного материала в снежном покрове дрейфующих льдов Арктики (пролив Фрама) // Докл. PAH. 2002. T. 383, № 3. C. 385–389.
- 7. Шевченко В.П., Маслов А.В., Штайн Р. Распределение ряда редких и рассеянных элементов в осадочном материале, переносимом дрейфующими льдами в районе плато Ермак, Северный Ледовитый океан // Океанология. В печати.
- 8. Dethleff D., Kuhlmann G. Fram Strait sea-ice sediment provinces based on silt and clay compositions identity Siberian Kara and Laptev seas as main source areas // Polar Research. 2010. V. 29. P. 265-282.
- Lisitzin A.P. Sea-Ice Sedimentation in the Ocean. Recent and Past. Berlin; Heidelberg; New York: Springer-Verlag, 2002. 563 p.
- 10. Lisitzin A.P., Shevchenko V.P. Glacial-Marine Sedimentation // Encyclopedia of Marine Geosciences. Springer Science+Business Media Dordrecht, 2015. DOI 10.1007/978-94-007-6644-0 67-1.
- 11. Nürnberg D., Wollenburg I., Dethleff D., Eicken H., Kassens H., Letzig T., Reimnitz E., Thiede J. Sediments in Arctic sea ice: Implications for entrainment, transport and release // Marine Geology. 1994. V. 119. P. 185-214.
- 12. Shevchenko V., Kukina N. Ice-rafted sediments // Scientific cruise report of the Arctic expedition ARK-XX/3 of RV "Polarstern" in 2004: Fram Strait, Yermak Plateau and East Greenland continental margin / Ed. R. Stein. Berichte zur Polar- und Meeresforschung. 2005. No. 517. P. 15–21.