ГЕОХРОНОЛОГИЯ

ИЗОТОПНАЯ ГЕОХРОНОЛОГИЯ ДРЕВНЕЙШИХ МАГМАТИЧЕСКИХ И МЕТАМОРФИЧЕСКИХ КОМПЛЕКСОВ ЗОНЫ ЗЮРАТКУЛЬСКОГО РАЗЛОМА (ЮЖНЫЙ УРАЛ)

© 2016 г. А. И. Степанов, Ю. Л. Ронкин

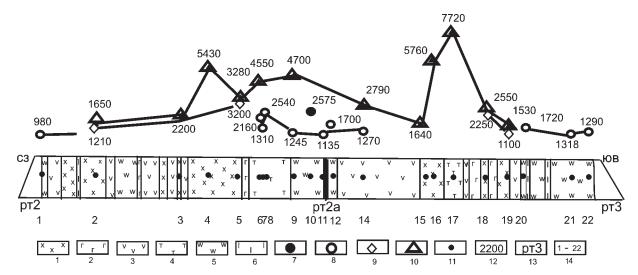
К настоящему времени на фоне довольно высокой общей изотопно-геохронологической изученности Урала зона Зюраткульского разлома имеет наибольшее количество изотопных датировок различного уровня достоверности, полученных разными методами (только калий-аргоновым методом около 200 определений, в том числе по мономинералам более 100). Но все они разбросаны по отдельным работам (статьям, монографиям), что сужает оценку возможности дальнейших исследований этой структуры. Поэтому идея обобщить результаты геохронологических исследований в виде таблицы изотопно-возрастных дат (табл. 1), отражающих время активности магматических и ме-

таморфических процессов, в перспективе позволит более направленно изучать эволюцию древнейших комплексов Южного Урала.

В основу формы и структуры таблицы положены результаты методических геолого-геохронологических работ, проведенных по 86-метровому разрезу стенки квершлага (рис. 1) между рудными телами 2 и 3 на горизонте 166 м шахты "Центральная" на Кусинском месторождении ильменитмагнетитовых руд, расположенном в пределах Кусинского (Кусинско-Чернореченского) массива. По горизонтальной линии стенки квершлага на уровне средины между кровлей и почвой выработки через 40 см были взяты образцы для петрографиче-

Таблица 1. Изотопно-геохронологическая изученность древнейших магматических и метаморфических комплексов

Предполагаемый		МАГМАТИЧЕСКИЙ КОМПЛЕКС								
возрастной рубеж		Кусинско-Копанская группа габбровых массивов,						Израндит-клинопироксенито-		
этапов активности		Губенский, Рябиновский гранитные массивы						вый комплекс г. Карандаш		
процессов, млн лет		[18, 19]	[20]	[23–26]		[5, 25]		[4, 9, 14]		
1	2	3	4	5		6	7	8		
		K-Ar	K-Ar	U-Pb	Sm-Nd	U-Pb	Rb-Sr	K-Ar	U-Pb	U-Pb SHRIMP
V	1350 ± 50	1320-1290	1310 ± 65	1353 ± 16	1392 ± 130	1385 ± 25	1394 ± 5			
			1400 ± 75	1379 ± 8	1363 ± 78	1386 ± 34	1388 ± 9			
						1330 ± 16				
	1000 1500	1000 1500	1000 55			1330 ± 27				
IV	1800-1600	1800–1720				1686 ± 40				
		1650	1808 ± 40			1607 ± 72 1700 ± 98				
						1700 ± 98 1624 ± 58				
III	б) 2200–2000	2160–2110	2158 ± 85			1021 = 30				2022 ± 15
	,		1950 ± 40							
	a) 2450–2350 (?)									
II	б) 2650–2550	2575–2540				2645 ± 91				2696 ± 13
	a) 3000–2800					-				
Ī	б) 3600–3300	3300–3200	3350_3280					3300 ± 100	3512 + 38	
1	, 2000 3300	3300 3200	3320 3200					2200 ± 100	3512 = 30	
	a) > 3600							4200 ± 150		


^{*} Значения по соотношениям 207 Pb/ 206 Pb.

ского изучения пород разреза (для шлифов) и 20 геохронологических проб для определения возраста пород и минералов калий-аргоновым методом в лаборатории радиогеологии ИГГ УрО РАН.

Габброиды массива в течение периода существования претерпели многократные изменения. Установлено, что первичными породами массива являются оливиновые габбронориты [19], сохранившиеся в массиве в виде будиноподобных блоков в межрудных интервалах как результат тектонических и метаморфических процессов. От блоков по направлению к зонам рудных тел происходит преобразование габброноритов по общей схеме: габбронорит – амфиболовые габбро (антофиллит-жедриткуммингтонитовые разности) – роговообманковые габбро - габбро-амфиболиты и амфиболиты (непосредственно вмещающие рудные тела и имеющие свою околорудную метасоматическую зональность). В амфиболитах вблизи рудных тел и параллельно им располагаются пластообразные тела плагиоклазитов (анортозитов). Геохронологическое изучение разреза включает определение возраста первичных оливиновых габброноритов и метаморфических амфиболовых габбро, установление причин искажения возраста [10, 11, 19] и периоды действия метаморфических процессов (главным образом амфиболизации). В результате установлено, что завышенные количества аргона-40 обусловлены захватом его в микропустотах и разнотипных включениях в минералах (в данном случае в плагиоклазах) при перекристаллизации их (рис. 2а-в) в периоды метаморфических преобразований пород. Этот вывод уверенно доказывается тем, что при измельчении мономинеральных проб измененных плагиоклазов до фракции мельче 0.06 мм микропустоты разрушаются и захваченный ими избыточный аргон-40 легко уходит из таких измененных плагиоклазов (рис. 2г), в то время как потери аргона-40 из первичных неизмененных плагиоклазов (проба 5) незначительны и несистемны, находятся в пределах 5%-й погрешности метода, показывая отсутствие захваченного ⁴⁰Ar. При этом возраст неизмененного плагиоклаза (3280 млн лет) согласуется с возрастом сосуществующего пироксена (3200 млн лет). Занижение возраста по минералам ("природная" потеря радиогенного аргона-40) обусловлена близостью к зонам ближайших рудных тел 2 или 3 (рис. 3, 4), где наиболее интенсивно прошли метаморфические процессы, что в свою очередь доказывает существование значительных температур в

зоны Зюраткульского разлома (Южный Урал)

			ME	ГАМОРФІ	ИЧЕСКИЙ	І КОМПЛЕ	КС				
Тараташский комплекс								Александровский комплекс			
[8]	[3–5, 13–17, 22]							[12, 13, 16, 20]			
9	10								11		
U-Pb	Sm-Nd	U-Pb SHRIMPII ID TIMS	Rb-Sr ID TIMS	Ar-Ar	K-Ar	Pb-Pb*	U-Pb	K-Ar	Pb-Pb*	U-Pb ID TIMS	
			1400– 1320	1335 ± 25 1301				1330 1290			
			$ \begin{array}{c} 1800 \pm 3 \\ 1810 \pm 41 \end{array} $	1810 ± 8	1581 ± 52		1777 ± 79	$ \begin{array}{c} 1883 \pm 55 \\ 1848 \pm 8 \\ 1692 \pm 32 \end{array} $			
2137 ± 97 2127 ± 65		2044 ± 8 2032 ± 27 2210 ± 23 2231 ± 23				1985–1915 2100–2230			2027– 2080		
		2344 ± 29 2345 ± 3 2461 ± 36				2390	2311 ± 20 2449 ± 82				
					2564 ± 68		2611 ± 17				
2913 ± 133 2915 ± 155					2995 ± 50		2792 ± 86	2810–2700			
	3455 ± 39 3490 ± 37 3645 ± 34						3445 ± 260				

Рис. 1. Геолого-геохронологический разрез по стенке квершлага гор. 166 м шахты "Центральная" Кусинско-го месторождения.

Породные комплексы: 1 – габбронориты, пироксеновые габбро; 2 – пироксеновые габбро амфиболизированные; 3 – амфиболовые габбро соссюритизированные; 4 – габбро-амфиболиты; 5 – амфиболиты; 6 – плагиоклазиты (анортозиты). Калийаргоновые значения по минералам: 7 – куммингтонит-антофиллитовая роговая обманка, 8 – обыкновенная (зеленая) роговая обманка, 9 – пироксен, 10 – плагиоклаз. Прочие: 11 – точки отбора геохронологических проб, 12 – калий-аргоновые значения (значения, пересчитанные на термин "возраст"), 13 – рудные тела, 14 – номера геохронологических проб.

рудных зонах и высокую вероятность преобразования первично магматических руд и пород.

На основании анализа полученных значений калий-аргонового возраста по разрезу (см. рис. 1) и привлечения датировок по минералам из габброидов Медведевского массива (табл. 1, гр. 4), полученных в лаборатории изотопной геологии ИМГРЭ (руководитель лаборатории С.Н. Вороновский, минералогический контроль Л.В. Овчинникова [19]), составлена таблица геохронологической изученности древнейших магматических и метаморфических пород, в которой намечается определенная периодичность в активности геологических процессов, определяемая временем появления новых минералов (амфибола, биотита), образовавшихся в результате метаморфизма. Этим достаточно уверенно определился этапный характер проявления магматических и метаморфических процессов в докембрии в пределах всего кусинско-маткальского блока (табл. 1, гр. 3).

I. 3300–3200 млн лет — возраст первичных сосуществующих пироксенов и плагиоклазов из оливиновых габброноритов Кусинского массива, для Медведевского массива 3350–3280 млн лет.

II. 2575–2540 млн лет – ранний возраст антофиллит-жедритовой роговой обманки и амфибола.

III. 2160–2110 млн лет определен как время наиболее раннего образования амфибола в габбронорите Медведевского массива [20].

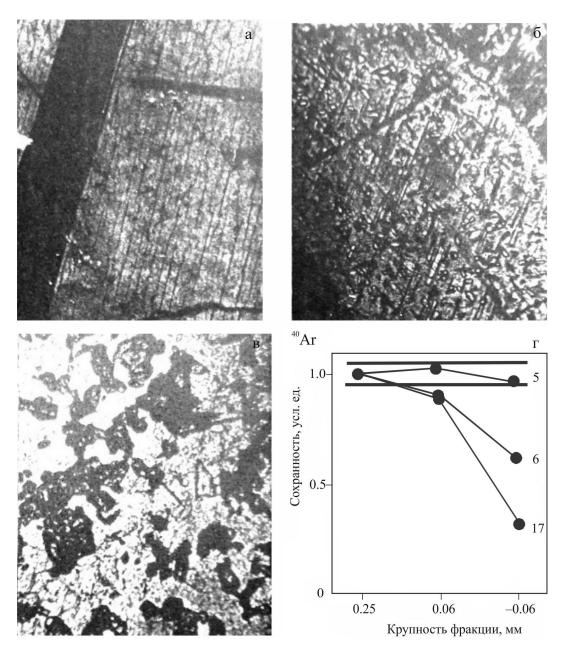
IV. 1810—1700 млн лет — время формирования раннего биотита в габбро Медведевского массива и гранитогнейсах в составе блока в пределах карьера Ахтенского железорудного месторождения (1883—1692 млн лет).

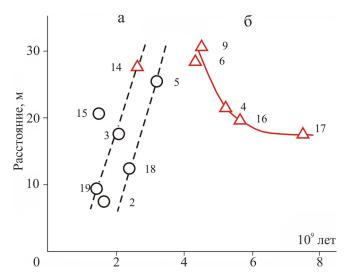
1700–1650 млн лет — наиболее ранний возраст амфибола из амфиболита вдали от рудного тела в разрезе квершлага (см. рис. 1).

V. 1350—1270 млн лет — время формирования (преобразования) рудных зон: возраст амфибола из околорудных амфиболитов разреза квершлага (Кусинский массив), позднего амфибола и биотита из габброидов Медведевского массива [20].

Дальнейшее более широкое привлечение материалов по другим методам позволило более определенно составить общую геохронологическую периодичность времени действия геологических процессов в пределах всей зоны Зюраткульского разлома, включая израндит-клинопироксенитовый комплекс и метаморфиты Александровского комплекса (табл. 1, гр. 2). Принятые по таким критериям обобщенные рубежи этапов имеют определенную разумную условность и требуют дальнейшего развития.

В гр. 5. табл. 1 приведены данные уран-свинцового и самарий-неодимового методов, которыми датированы наиболее поздние процессы окончательного становления рудных тел ильменит-магнетитового состава как конечных продуктов распада титаномагнетитового твердого раствора, сформировавшегося в магматическую стадию при температурах $1592-1525^{\circ}$ C (см. в [22]), которые полностью сегрегировались ко времени $1330 \pm n$ млн лет. Учитываются также данные о времени формирования анортозитов и внедрения гранитоидных даек. Здесь не включено значение 1388 ± 62 млн лет [25] из-за методической ошибки при определении возраста габбровых разновидностей пород массива Sm-Nd изохронным методом [21]: в действительности по-




Рис. 2. Шлифы плагиоклазов разных габброидов (оптическое ув. 120).

а — первичный оливиновый габбронорит, проба № 5, возраст 3.28 млрд лет; б — соссюритизированное амфиболовое габбро, проба № 6, **K-Ar значение "возраста" 4.55 млрд лет; в — значительно соссюритизированное ам**фиболовое габбро, проба № 17, значение "возраста" 7.7 млрд лет; г — зависимость потерь радиогенного аргона-40 плагиоклазами "а", "б", "в" от степени их измельчения.

лученная "изохрона", первично расценивающаяся при изотопном анализе как "эррохрона" ("ошибочное время"), не имеет геологического смысла, хотя в последующих работах постоянно приводится как возраст габброноритов Кусинского массива.

В гр. 6 и 7 табл. 1 Rb-Sr и U-Pb значениями отмечена эпоха: 1350 ± 50 млн лет (габброиды Копанского массива) — эпоха заключительных процессов в эволюции габброидов кусинско-копанского комплекса. Величины в пределах 1600-1700 млн лет,

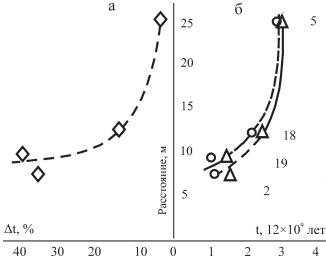

относящиеся к гранитоидам Губенского массива, имеют большое значение, так как они подтверждают метасоматический генезис гранитоидов [1]. Если объединить "цирконовый" возраст 2645 ± 91 млн лет (гр. 6 табл. 1) как возраст "субстрата" для метаморфического Губенского гранитоидного массива ([7]) со значениями 2696 ± 13 млн лет для израндита, со временем метаморфических преобразований габброидов Кусинского массива 2540 и 2575 млн лет (гр. 3 табл. 1) и значениями 2564 ± 68 млн лет

Рис. 3. Зависимость изменения калий-аргоновых значений "возраста" пироксенов из габброноритов (а) и плагиоклазов из амфиболовых (амфиболизированных) габбро (б) от близости к рудному телу.

тараташских кристаллосланцев (гр. 10 табл. 1), метаморфизованных в амфиболитовой стадии, в единовременный процесс активности в регионе, то можно полагать, что в составе "субстрата" губенских гранитоидов могут быть метаморфизованные габбронориты и гранитизированные кристаллосланцы, представляя таким образом мафитовую компоненту состава гранитоидов, что согласуется геохронологически лучше и подтверждает мнение [24] о гетерогенности субстрата гранитоидов и неоднократности во времени процессов их гранитизации. Можно отметить также хотя и методически небезупречное изохронное значение Rb-Sr возраста комплекса пород от габбро-норитов до гранофировых гранитов 2553 ± 96 млн лет [2], характеризующее в принципе тенденцию активности этого же этапа.

В гр. 8 табл. 1 приведены данные современных методик определений U-Pb возраста цирконов из уникального не только для Урала, массива древнейших пород израндит-клинопироксенитового комплекса 2696 ± 13 млн лет [4] и 3512 ± 38 млн лет [14], подтверждающие уже имеющееся калийаргоновые значение 3300 ± 100 млн лет и предполагающие более древние, на уровне -4200 ± 150 млн лет [9]. Исключительная свежесть породы ("израндита") и всех слагающих ее минералов, первичность их, отсутствие каких-либо признаков метаморфических изменений, очень малая микропористость [9] предполагают отсутствие избыточности Ar-40. Кроме того, известно, что весь Ar-40 является радиогенным, то есть образовался в результате радиораспада К-40. Из этого можно рассчитать, хотя бы качественно, степень влияния захваченного аргона на "удревнение" значений возраста (если предположить захват аргона в момент кристалли-

Рис. 4. Зависимость изменения значений возраста сосуществующих пироксенов (кружки) и плагиоклазов (треугольники) из неизмененных габброноритов (б) и разницы (а) между этими значениями (Δ t, %) от расстояния до ближнего рудного тела.

зации породы): количества радиогенного Ar-40, накопленного от начала консолидации аргона в порах породы до момента 4.2 млрд лет назад, по сравнению с накопившимся за последующие 4.2 млрд лет к настоящему времени количеством Ar-40, будет явно недостаточно, чтобы оказать заметное влияние на возможное "удревнение" возраста. Все эти признаки позволяют с большой долей вероятности предполагать реальность будущих находок значений возраста более 3500—3600 млн лет.

В гр. 9 табл. 1 располагаются ранние результаты определений возраста цирконов из разнотипных пород Тараташского комплекса [8] классическим методом больших навесок, дающие усредненные значения и трудно привязываемые к изучаемым породам — они фиксируют только время. Гораздо более определенный результат дает классический метод K-Ar [22] (гр. 10 табл. 1).

В гр. 10 табл. 1 наиболее полно представлены результаты современных методов по породам Тараташского комплекса. Здесь заметный интерес представляют значения U-Pb метода по железистым кварцитам Тараташского комплекса [5] в сравнении с данными калий-аргонового метода [22]. При этом прежде всего необходимо представлять, какой процесс отражают значения возраста ксеногенного циркона, входящего в состав пород. Обычно значения возраста К-Аг метода по минералам характеризуют время образования этих минералов в определенных геологических процессах, а значения U-Pb метода по цирконам очень часто не привязаны к определенной породе и дают главным образом лишь время какого-либо процесса (как здесь циркон из гнейсов). И если значения 3504 ± 120 млн лет [14] и 3445 ± 260 млн лет [5] наравне с 3512 ± 38 млн лет по израндиту характеризуют субстрат комплексов, то другие отражают лишь время и "связаны с разномасштабными процессами преобразования гранулитовых цирконов" [5]. Время образования железистых кварцитов, вероятнее всего, не древнее 1777 ± 79 млн лет, и это в свою очередь согласуется с этапом щелочного метасоматоза по K-Ar методу (1800–1600 млн лет). В целом создается впечатление, что многообразие значений дискордий отражает прецизионно измеренное современное состояние изотопных отношений Th, U и Pb для каждой анализированной точки цирконов, характеризующих единый геологический процесс.

В гр. 11 табл. 1 данные K-Ar и U-Pb методов также характеризуются древними значениями возраста, причем калий-аргоновые цифры относятся ко времени образования конкретных минералов, образовавшихся в определенные фации метаморфизма [22].

Таким образом, представленная таблица 1 даже в предварительном варианте показывает не только широкое развитие раннего докембрия, но и возможность реального существования архейского периода в истории геологических процессов на территории Южного Урала. Можно также отметить, что этапам магматической активности и сопутствующим ей метаморфическим процессам магматического комплекса соответствует время активности процессов в метаморфических комплексах.

СПИСОК ЛИТЕРАТУРЫ

- Виноградская Г.М. Генезис гранитоидов Златоустовского района на Урале // Минералогический сборник. Новая серия. Т. 96, № 3. Л.: ВСЕГЕИ. С. 34–62.
- 2. Горожанин В.М., Алексеев А.А., Калеганов Б.А. Новые данные по геохронологии Кусинско-Копанского комплекса // Ежегодник-1994. Уфа: ИГ УфУНЦ РАН. 1995. С. 70–73.
- Дунаев В.А., Степанов А.И., Панова М.В. Возраст пород Копанско-Кусинской интрузии и время их метаморфизма (Южный Урал) // Геолого-радиологическая интерпретация несходящихся значений возраста. XVI сессия Комиссии по опред. абсол. возр. геол. формаций. М.: Наука, 1973. С. 238–247.
- 4. *Краснобаев А.А.* Циркон как индикатор геологических процессов. М.: Наука, 1986. 152 с.
- Краснобаев А.А., Козлов В.И., Пучков В.Н., Бушарина С.В., Бережная Н.Г., Нехорошева А.Г. Цирконология железистых кварцитов Тараташского комплекса на южном Урале // Докл. АН. 2011. Т. 437, № 6. С. 803–807.
- Краснобаев А.А., Пучков В.Н., Бушарина С.В., Козлов В.И., Пресняков С.Л. Цирконология израндитов (Южный Урал) // Докл. АН. 2011. Т. 439, № 3. С. 394–398.
- 7. Краснобаев А.А., Ферштатер Г. Б., Беа Ф., Монтеро П. Цирконовый возраст габбро и гранитов Кусинско-Копанского комплекса (Южный Урал) // Ежегодник-2005. Екатеринбург: ИГГ УрО РАН, 2006. С. 300–303.
- 8. Краснобаев А.А., Чередниченко Н.В. Цирконовый ар-

- хей Урала // Докл. АН. 2005. Т. 400, № 4. С. 510–514.
- 9. Овчинников Л. Н., Дунаев В. А. О древнейшей горной породе Урала // Глубинное строение Урала. Тр. Первой Уральской сессии Научного совета по компл. исслед. земной коры и верхней мантии. М.: Наука, 1968. С. 200–209.
- 10. Овчинников Л.Н., Степанов А.И., Вороновский С.Н. О причинах искажения калий-аргоновых дат // Проблемы геохронологии и изотопной геологии. М:. ИМГРЭ, 1981. С. 3–32.
- 11. Овчинников Л.Н., Степанов А.И., Вороновский С.Н. Методические рекомендации по учету геохимических причин искажений калий-аргоновых дат. М.: ИМГРЭ, 1982. 50 с.
- 12. Пыстина Ю.И., Пыстин А.М. Цирконовая летопись уральского докембрия. Екатеринбург, 2002. 168 с.
- Ронкин Ю.Л., Синдерн С., Крамм У., Лепихина О.П. Изотопная геология древнейших образований Урала: U-Pb, Sm-Nd, Rb-Sr и ⁴⁰Ar-³⁹Ar систематика // Структурно-вещественные комплексы и проблемы геодинамики докембрия фанерозойских орогенов: мат-лы. науч. конф. 2008. Екатеринбург: УрО РАН, С. 117–120.
- 14. *Ронкин Ю.Л., Синдерн С., Лепихина О.П.* Изотопная геология древнейших образований Южного Урала // Литосфера. 2012. № 5. С. 50–76.
- 15. Ронкин Ю.Л., Синдерн С., Маслов А.В., Матуков Д.И., Крамм У., Лепихина О.П. Первая находка древнейших на Урале цирконов с возрастом 3.5 млрд лет: U-Pb (SHRIMP-II) SM-Nd (ID-TIMS) изотопные подтверждения // Геология и полезные ископаемые западного Урала: мат-лы науч.-практ. конф. Пермь: Пермский госуниверситет, 2007. С. 6–9.
- 16. Ронкин Ю.Л., Синдерн С., Хетцель Р., Щульте Б.А., Крамм У., Лепихина О.П., Попова О.Ю. Т-t эволюция тараташского и александровского метаморфических комплексов (Южный Урал): U-Pb, Sm-Nd, Rb-Sr и 40Ar-39Ar изотопные ограничения // Метаморфизм и геодинамика: мат-лы междунар. науч. конф. Екатеринбург: ИГГ УрО РАН, 2006. С. 101–104.
- 17. Синдерн С., Ронкин Ю.Л., Хетцель Р., Щульте Б.А., Крамм У., Маслов А.В., Лепихина О.П., Попова О.Ю. Тараташский и Александровкий метаморфические комплексы (Южный Урал): Т-Т ограничения // Ежегодник-2005. Екатеринбург: ИГГ УрО РАН, 2006. С. 322–330.
- 18. Степанов А.И. Калий-аргоновый возраст геологических образований Урала и его геолого-геохимическая интерпретация. Дис. ... канд. геол.-мин. наук. М.: ИМГРЭ, 1977, 130 с.
- 19. Степанов А.И. Калий-аргоновая датировка эволюции габброидов Кусинского массива. XIV чтения памяти А.Н. Заварицкого. Екатеринбург: ИГГ УрО РАН, 2009. С. 294–297.
- 20. Степанов А.И. Статистический аспект калий-аргонового датирования габброидов Кусинско-копанской интрузии (Южный Урал) // Ежегодник-2009. Тр. ИГТ УрО РАН. Вып. 157. 2010. С. 297–301.
- 21. Степанов А.И. О геологической интерпретации значений изотопного возраста (Sm-Nd изохронный метод) // УГЖ. 2016. № 3. С. 56–58.
- 22. Степанов А.И., Ронкин Ю.Л., Главатских С.П. V, Cr, Mn в акцессорных Ті-Fе-минералах из пород древнейших комплексов зоны Зюраткульского разлома //

- Тр. конф. XVI чтения А.Н. Заварицкого. Екатеринбург: ИГГ УрО РАН, 2015. С. 165-170.
- 23. Холоднов В.В., Ронкин Ю.Л., Ферштатер Г.Б., Прибавкин С.В., Лепихина О.П., Попова О.Ю. Новые Sm–Nd изотопные данные о возрасте Кусинского габбрового массива (Южный Урал) // Ежегодник-2005. Екатеринбург: ИГГ УрО РАН, 2006. С. 331–334.
- 24. *Холоднов В.В., Ферштатер Г.Б., Бородина Н.С. и др.* Гранитоидный магматизм зоны сочленения Урала и Восточно-Европейской платформы // Литосфера. 2006. № 3. С. 3–27.
- 25. Холоднов В.В., Ферштатер Г.Б., Ронкин Ю.Л., Бо-
- родина Н.С., Прибавкин С.В., Лепихина О.П. Sm-Nd, Rb-Sr-возраст габброидов, гранитоидов и титаномагнетитовых руд из расслоенных интрузий кусинско-копанского крмплекса (Южный Урал) // Докл. АН. 2010. Т. 432, № 5. С. 650–654.
- 26. Шагалов Е.С., Холоднов В.В. U-Рь датирование цирконов Медведевского массива: возрастные рубежи среднерифейских рудоносных (Ti-Fe-V) интрузий Южного Урала // Геохронометрические изотопные системы, методы их изучения, хронология геологических процессов: мат-лы V Рос. конф. изот. геохр. М.: ИГЕМ, 2012. С. 371–373.