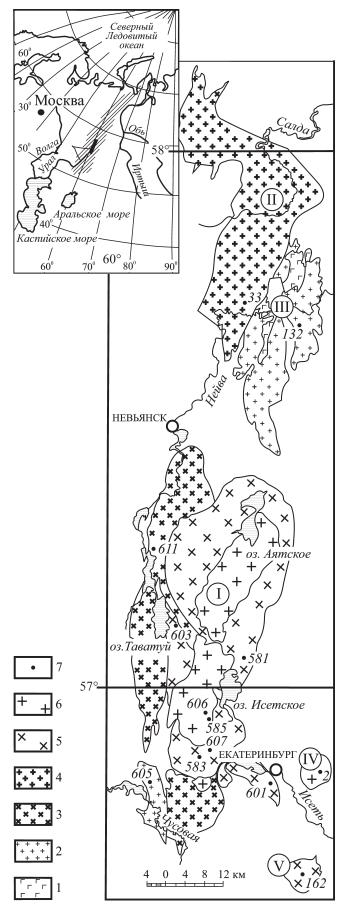
ГЕОХРОНОЛОГИЯ

К ВОПРОСУ О ВОЗРАСТЕ И СОСТАВЕ ЗЕМНОЙ КОРЫ ВОСТОЧНОГО СЕКТОРА СРЕДНЕГО УРАЛА: Sr-Nd ИЗОТОПНЫЕ ОГРАНИЧЕНИЯ

© 2016 г. В. Н. Смирнов, Ю. Л. Ронкин, Н. Г. Солошенко, М. В. Стрелецкая

Урал является одним из наиболее хорошо изученных внутриконтинентальных подвижных поясов. Основные особенности его геологического строения к настоящему времени достаточно надежно установлены и рассмотрены в ряде обобщающих работ [1, 4, 8 и др.], однако благодаря широкому внедрению в практику новых методов геологических исследований в последние годы появляются данные, позволяющие по-новому трактовать некоторые ключевые положения существующих представлений о геологии этого региона. Одним из таких вопросов, требующих дальнейшего анализа в связи с появлением новой информации, является проблема генезиса земной коры в пределах территории восточного склона Урала. Начиная с первых работ по анализу истории формирования Урала с мобилистских позиций [4] и до настоящего времени [8 и др.] преобладает точка зрения о том, что фундаментом для геологических структур восточного сектора Урала (территории, расположенной к востоку от Главного Уральского разлома) служила палеозойская кора океанического типа. В то же время результаты изучения изотопного состава Sr и Nd в гранитоидах этого региона [3, 5, 6, 9, 11 и др.] свидетельствуют о том, что в процессах магмообразования принимали участие породы континентальной коры допалеозойского возраста. В настоящей работе изложены результаты более детального по сравнению с выполненными ранее работами изучения изотопного состава Sr и Nd в гранитоидах восточного склона Среднего Урала, позволяющие уточнить имеющиеся представления о составе и возрасте исходного вещества магматических комплексов этой части Уральского орогена.


Авторами выполнен анализ изотопного состава Sr и Nd в разных по составу гранитоидах, сформировавшихся в течение промежутка времени от среднего девона до начала перми, из наиболее хорошо изученных массивов Среднего Урала: Верхисетского, Шарташского, Краснопольского, Петрокаменского и Шабровского (рис. 1). В соответствии с имеющимися представлениями внедрение гранитоидов перечисленных массивов происходило в разных геодинамических обстановках: островодужной (пробы 132 и 605), активной окраины континента (33, 611) и континентальной коллизии (2, 162, 581, 583, 585, 601, 603, 606, 607). Воз-

раст пород предварительно был установлен U-Pb SHRIMP-II методом датирования по доменам призматического циркона с тонкой ритмичной зональностью (табл. 2, столбцы 2–3).

Rb-Sr и Sm-Nd данные, полученные масс-спектрометрическим методом изотопного разбавления (ID-TIMS), координаты точек отбора проб и графическая интерпретация результатов представлены в табл. 1, 2 и на рис. 2, 3. Размах осцилляции концентраций Rb-Sr в изученных породах определяется интервалами 14.8 г/т – 109 г/т и 192 г/т – 1026 г/т соответственно, диапазоны наблюдаемых отношений 87 Rb/ 86 Sr, 87 Sr/ 86 Sr, 87 Sr/ 86 Sr, (вычисленных с использованием U-Pb SHRIMP-II возрастов циркона) идентифицируются значениями 0.0950—1.134, 0.70456—0.70991 и 0.70331—0.70431 (или $^{+4.0}$ \div $^{+0.15}$ в единицах 8 Sr, ранжируется диапазоном 0.15—2.7 (см. табл. 1).

Коэффициенты вариации параметров Sm-Nd систематики (см. табл. 2) имеют значительно меньший по сравнению с Rb-Sr данными размах: 34.6, 36.5, 13.8, 0.014, 22.9% для содержаний Sm, Nd, атомных отношений 147 Sm/ 144 Nd, 143 Nd/ 144 Nd и $f_{\rm Sm/Nd}$ соответственно. Интервал изменения величин ϵ Nd = +1.9 $\dot{\epsilon}$ +6.2 (образцы 585 и 132).

Модельные Nd возрасты (T_{DM}) для изученных пород вычислены путем нахождения координат точек пересечения Sm-Nd трендов эволюции конкретных образцов с линией развития деплетированного вещества верхней мантии (см. рис. 2). Выполнено несколько вариантов расчета по одностадийной [12, 13, 15] и двухстадийной [14] моделям (см. табл. 2). Анализ полученных данных показывает, что наименьшими колебаниями в изученной выборке характеризуются "двухстадийные" возрасты [14] при параметрах модельного резервуара из работы [13] (коэффициент вариации 13.4%). Вычисленные с использованием этих параметров значения T_{DM} свидетельствуют о том, что отделение (или обособление) протолита гранитоидных расплавов от вещества деплетированной мантии произошло в интервале времени от 938 до 629 млн лет назад (см. табл. 2), то есть источником исходных для их магм служило вещество с возрастом не моложе неопротерозойского. При этом для преобладающей части изученных пород значения Nd модельного возраста

располагаются в значительно более узком возрастном интервале: от 537 до 662 млн лет по двухстадийной модели при параметрах модельного резервуара по [15] и 773–814 млн лет при использовании параметров из работы [13]. Исключение представляют граниты аятского комплекса (пробы 585 и 606), слагающие центральную часть Верхисетского батолита, для которых $T_{\rm DM}$ при тех же параметрах модельного резервуара имеет величины 773–814 и 892–938 млн лет (см. табл. 2).

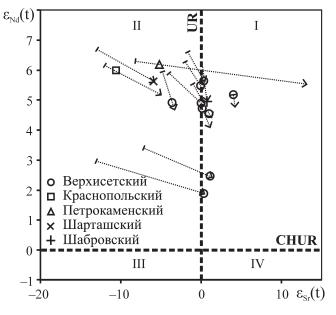
Относительно невысокие значения величины первичного отношения ${}^{87}{\rm Sr}/{}^{86}{\rm Sr}_i$ в изученных породах (см. табл. 1) свидетельствуют о том, что неопротерозойский источник гранитоидных расплавов имел низкое Rb/Sr отношение. Это позволяет рассматривать в качестве наиболее вероятного протолита метабазиты или бедные калием разновидности гранитоидов (тоналиты). Независимые данные о том, что к моменту формирования изучаемых гранитоидов в рассматриваемой части Урала присутствовали метаморфические породы основного состава, были получены ранее. На их наличие указывают находки ксеногенных (или реститовых) зерен граната метаморфического генезиса, по составу аналогичных гранатам из амфиболитов и гранулитов в силурийских и девонских магматических породах [10]. Следует отметить также, что метаморфические толщи с неопротерозойскими (вендскими) U-Рь изотопными датировками по циркону, сопоставимыми с Nd модельными возрастами протолита гранитоидных расплавов, известны в пределах Салдинского и Сысертско-Ильменогорского блоков, расположенных на небольшом удалении к северу и югу от изученной территории [2, 11 и др.].

Отмеченные различия Nd модельных возрастов гранитоидов и наблюдаемые вариации величины отношения $^{87}\mathrm{Sr}/^{86}\mathrm{Sr}_i$ позволяют предположить первичную неоднородность источника гранитоидных расплавов. Это наглядно иллюстрирует корреляционная диаграмма $\epsilon_{\mathrm{Sr}} - \epsilon_{\mathrm{Nd}}$ (см. рис. 3), где положение изученных гранитоидов в связи с существенной разницей времени их образования (интервал от 396 до 301 млн лет назад) показано в виде траекторий точек как функции возраста в диапазоне 400 млн лет

Рис. 1. Схема расположения интрузивных массивов с точками отбора проб для изотопных исследований.

Интрузивные массивы: I — Верхисетский, II — Краснопольский, III — Петрокаменский, IV — Шарташский, V — Шабровский. 1, 2 — петрокаменский габбро-гранитоидный комплекс (1 — габбро, 2 — гранитоиды); 3, 4 — западноверхисетский комплекс (3 — тоналиты, 4 — трондьемиты); 5 — верхисетский комплекс, гранодиориты; 6 — аятский и шарташский комплексы, граниты; 7 — точки отбора проб. Косой штриховкой на врезке показано положение Уральского подвижного пояса, залитым прямоугольником — площадь основного рисунка.

	Номер GPS координаты			Rb ¹	Sr ¹	87Rb/87Sr1	±2σ	87Sr/86Sr1	±2σ	⁸⁷ Sr/ ⁸⁶ Sr _i	£ 2	a (t)3	
	пробы	долгота	широта	[г/т]	[г/т]	"Kb/"SI	±20	"SI/"SI	±20	o'SI/ooSI _i	$f_{ m Rb/Sr}^2$	$\varepsilon_{\rm Sr}(t)^3$	
1	583	56° 52.370′	60° 18.802′	38.9	593	0.1896	0.0028	0.70499	0.00001	0.70416	+1.3	0.35(306)	
2	603	57° 07.038′	60° 14.092′	41.3	781	0.1529	0.0023	0.70456	0.00027	0.70388	+0.85	-3.6(312)	
3	607	56° 52.466′	60° 21.689′	35.9	537	0.1933	0.0029	0.70499	0.00007	0.70412	+1.3	-0.08(315)	
4	581	57° 03.325′	60° 28.609′	60.6	623	0.2811	0.0042	0.70535	0.00002	0.70415	+2.4	0.0(301)	
5	601	56° 49.493′	60° 33.184′	52.9	808	0.1893	0.0028	0.70504	0.00005	0.70421	+1.3	1.0(308)	
6	611	57° 16.274′	60° 10.326′	29.3	609	0.1393	0.0021	0.70482	0.00029	0.70405	+0.68	0.12(387)	
7	585	56° 56.372′	60° 20.796′	109	431	0.7338	0.0110	0.70731	0.00006	0.70417	+7.9	0.30(301)	
8	606	56° 56.545′	60° 20.639′	88.1	504	0.5056	0.0076	0.70640	0.00007	0.70422	+5.1	1.1(303)	
9	605	56° 49.249′	60° 08.714′	14.8	451	0.0950	0.0014	0.70485	0.00006	0.70431	+0.15	4.0(396)	
10	33	57° 43.098′	60° 28.636′	66.8	469	0.4125	0.0062	0.70555	0.00008	0.70331	+4.0	-11(382)	
11	132	57° 39.071′	60° 39.391′	75.1	192	1.134	0.017	0.70991	0.00001	0.70368	+12.7	-5.2(386)	
12	2	56° 50.378′	60° 42.745′	77.1	507	0.4397	0.0066	0.70562	0.00007	0.70373	+4.3	-5.9(302)	
13	162	56° 38.017′	60° 38.725′	39.2	1026	0.1104	0.0017	0.70467	0.00043	0.70420	+0.33	0.73(300)	
	Var (%)				35.5	85.4		0.21		0.041	111.7		


Таблица 1. Rb-Sr ID-TIMS данные для гранитоидов восточного склона Среднего Урала

Примечание. 1 получено методом ID-TIMS (Triton Plus) с использованием индикатора 85 Rb + 84 Sr. 2 87 Rb/ 86 Sr $_{UR} = 0.7045$, в скобках указан U-Pb SHRIMP-II возраст (млн лет) циркона соответствующего образца. Пробы из пород Верхисетского батолита: 583, 603, 607, 581 – гранодиориты верхисетского комплекса, 601 – гранит верхисетского комплекса, 611 – тоналит западноверхисетского комплекса, 585, 606 – граниты аятского комплекса, 605 – кварцевый диорит, комагматичный девонским островодужным вулканитам. Краснопольский массив: 33 – трондьемит западноверхисетского комплекса. Петрокаменский массив: 132 – гранит петрокаменского комплекса. Шарташский массив: 2 – гранит верхисетского комплекса. Шабровский массив: 162 – гранодиорит верхисетского комплекса. Var (%) – коэффициент вариации.

Рис. 2. "Одностадийная" (DM: 147 Sm/ 144 Nd = $= 0.2140, ^{143}$ Nd/ 144 Nd = 0.513160, пунктирные линии) и "двухстадийная" (147 Sm/ 144 Nd $_{cc} = 0.12,$ сплошные линии) эволюция **Sm-Nd изотопной си**стемы в изученных образцах на графике в координатах T– ϵ_{Nd} .

(основание пунктирной линии) – 300 млн лет (окончание в виде стрелки). На этой диаграмме гранитоиды образуют поле, характеризующееся значительным размахом колебаний величины $\varepsilon_{\rm Sr}$, что, по всей вероятности, объясняется неоднородностью соста-

Рис. 3. Корреляционная диаграмма $\varepsilon_{Sr}(t)$ – $\varepsilon_{Nd}(t)$ для изученных пород Среднего Урала.

ва протолита магматических расплавов. При этом преобладающая часть изученных пород характеризуется близкими значениями ε_{Nd} . Исключение представляют граниты аятского комплекса (пробы 585 и 606), отличающиеся пониженной величиной этого параметра, что согласуется с их более древними Nd модельными возрастами. По-видимому, наряду с породами основного состава в процессы магмообразования могли вовлекаться тоналиты, обособление которых в конце венда и кембрии при частич-

Габлица 2. U-Рь SHRIMP-II цирконовый возраст и Sm-Nd ID-TIMS данные для гранитоидов восточного склона Среднего Урала.

$T_{ m DM}^{7[6]}$		630	969	652	689	724	773	938	892	743	664	059	629	684	13.4
$T_{DM}^{7[5]}$	T:	538	297	557	591	622	999	814	773	639	569	929	537	989	14.0
T_{DM}^{6}	млн лет	618	646	663	089	692	880	988	905	1079	672	712	602	635	19.5
T_{DM}^5		530	563	595	585	009	733	9//	780	831	573	591	520	553	17.1
${ m T}_{ m DM}^{~4}$		455	497	487	512	533	653	720	719	724	496	501	447	486	19.1
$\varepsilon_{ m Nd}(t)^3$		+5.6(306)	+4.9(312)	+5.5(315)	+4.9(301)	+4.5(308)	+4.7(387)	+1.9(301)	+2.5(303)	+5.2(396)	+6.0(382)	+6.2(386)	+5.6(302)	+4.9(300)	
$\pm 2\sigma$ $^{143}\text{Nd}/^{144}\text{Nd}^{1}$ $\pm 2\sigma$ $f_{\text{Sm/Nd}}^{2}$		-0.41	-0.46	-0.37	-0.40	-0.43	-0.29	-0.43	-0.38	-0.15	-0.38	-0.30	-0.43	-0.46	22.9
		0.000012	0.000010	0.000000	0.000008	0.000000	0.000012	0.000010	0.000013	0.000008	0.000020	0.000010	0.000021	0.000078	
		0.512764	0.512702	0.512765	0.512731	0.512698	0.512735	0.512565	0.512613	0.512822	0.512757	0.512804	0.512756	0.512712	0.014
		9000.0	0.0005	9000.0	9000.0	9000.0	0.0007	9000.0	9000.0	0.0008	9000.0	0.0007	9000.0	0.0005	
147 Sm /144 N. d.1	DNI /IIIC	0.1162	0.1058	0.1231	0.1177	0.1122	0.1403	0.1116	0.1215	0.1663	0.1225	0.1377	0.1116	0.1064	13.8
Nd¹	Ţ	12.9	10.9	14.5	24.2	15.7	11.5	12.8	5.02	12.5	9.34	9.8	13.9	19.1	36.5
Sm^{1}	Γ/T	2.47	1.90	2.95	4.71	2.91	2.66	2.36	1.01	3.43	1.89	1.96	2.57	3.37	34.6
CKB0		0.16	0.16	0.32	4.2	0.999	69.0	90.0	0.024	0.0023	0.031	0.0030	0.44**	**86.0	
Γ_*^*	млн лет	306 ± 2	312 ± 3	315 ± 4	301 ± 2	308 ± 3	387 ± 4	301 ± 5	303 ± 3	396 ± 5	382 ± 6	386 ± 3	$302 \pm 3**$	$300\pm4**$	/ar (%)
Номер	пробы	583	603	209	581	601	611	585	909	605	33	132	7	162	^
		1	7	<u>е</u>	4	S	9		~	6	10	Ξ	12	13	

Примечание. * получено с помощью SHRIMP-II; ** данные из работы [7]; ¹ получено методом ID-TIMS с использованием индикатора 149 Sm $^{+149}$ Nd; 2 147 Sm $^{/44}$ Nd $^{G_{\rm HUR}}$ = 0.1967 [12]; 3 143 Nd $^{/44}$ Nd $^{G_{\rm HUR}}$ = 0.512636 [12], в скобках указан U-Pb SHRIMP-II возраст (млн лет) циркона соответствующего образия; 4 в соответствии с 8 Nd(1) = 0.256, 143 Nd $^{/144}$ Nd = 0.513142 [15]; 6 одностадийный возраст, 147 Sm $^{/144}$ Nd = 0.513160 [13]; 7 двухстадийный возраст, 147 Sm $^{/144}$ Nd = 0.513160 [13]; 7 двухстадийный возраст, 147 Sm $^{/144}$ Nd = 0.5250, 143 Nd $^{/144}$ Nd = 0.513142 [15]; 60 с учетом 147 Sm $^{/144}$ Nd = 0.513160 [13]. **Var (%) – коэффициент вариа**дии. Координаты точек отбора, а также сведения об образдах приведены в табл. 1 и примечании к ней. ном плавлении неопротерозойских базитов предполагалось в работах В.С. Попова с соавторами [5, 6 и др.]. Не исключено также, что плавлению могли подвергаться и существенно отличающиеся по возрасту горизонты неопротерозойской коры, а также смесь вещества этой коры и различных по составу пород палеозойского возраста.

Таким образом, результаты исследования Sr-Nd изотопной систематики гранитоидов изученного региона позволяют констатировать, что в составе протолита гранитоидных расплавов, генерация которых происходила в разных геодинамических обстановках (островодужной, окраинноконтинентальной и коллизионной), присутствовало и, по всей вероятности, преобладало вещество с возрастом не моложе неопротерозойского.

Работа выполнена в рамках комплексной программы УрО РАН (15-18-5-15).

СПИСОК ЛИТЕРАТУРЫ

- 1. Иванов К.С. Основные черты геологической истории (1.6–0.2 млрд лет) и строение Урала. Дис. ... докт. геол.-мин. наук. Екатеринбург: ИГГ УрО РАН, 1998. 252 с.
- Краснобаев А.А., Давыдов В.А. Цирконовая геохронология Салдинского метаморфического блока (Средний Урал) // Докл. АН. 2003. Т. 293, № 3. С. 388–392.
- 3. Осипова Т.А. Источники гранитоидов Главной гранитной оси Урала: Sm-Nd, Rb-Sr и U-Pb данные // Магматизм и метаморфизм в истории Земли: тезисы докладов XI Всерос. петрограф. сов. Т. II. Екатеринбург: ИГГ УрО РАН, 2010. С. 111–112.
- 4. Пейве А.В., Иванов С.Н., Нечеухин В.М., Перфильев А.С., Пучков В.Н. Тектоника Урала. М.: Наука, 1977. 120 с.
- Попов В.С., Богатов В.И., Журавлев Д.С. Источники гранитных магм и формирование земной коры Среднего и Южного Урала: Sm-Nd и Rb-Sr изотопные данные // Петрология. 2002. Т. 10, № 4. С. 389–410.
- 6. Попов В.С., Тевелев А.В., Беляцкий Б.В., Богатов В.И., Петрова А.Ю., Журавлев Д.З., Осипова Т.А. Изотопный состав Nd и Sr в гранитах Урала как показатель взаимодействия мантия—кора // ЗВМО, 2003. Ч. СХХХП. № 3. С. 16—38.
- 3ВМО. 2003. Ч. СХХХІІ, № 3. С. 16–38.
 7. *Прибавкин С.В., Пушкарев Е.В.* Возраст поздних орогенных гранитоидов Урала по данным U-Рb-изотопии цирконов (на примере Шарташского и Шабровского массивов) // Докл. АН. 2011. Т. 438, № 3. С. 369–373.
- 8. *Пучков В.Н.* Геология Урала и Приуралья (актуальные вопросы стратиграфии, тектоники, геодинамики и металлогении). Уфа: ДизайнПолиграфСервис, 2010. 280 с.
- 9. *Ронкин Ю.Л.* Изотопы стронция индикаторы эволюции магматизма Урала // Ежегодник-1988, ИГГ УрО АН СССР. 1989. С. 107–110.
- 10. Смирнов В.Н., Чащухина В.А., Пушкарев Е.В., Ведерников В.В. О природе акцессорных гранатов в породах габбро-гранитоидных серий Урала // Докл. АН СССР. 1988. Т. 298, № 4. С. 256–259.

ЕЖЕГОДНИК-2015, Тр. ИГГ УрО РАН, вып. 163, 2016

- Шатагин К.Н., Астраханцев О.В., Дегтярев К.Е., Лучицкая М.В. Неоднородность континентальной коры Восточного Урала: результаты изотопно-геохимического изучения палеозойских гранитоидных комплексов // Геотектоника. 2000. № 5. С. 44–60.
- 12. *DePaolo D.J.* Neodymium isotope geochemistry. An introduction. New York: Springer-Verlag, 1988. 187 p.
- 13. Goldstein S.L., O'Nions R.K., Hamilton P.J. A Sm-Nd isotopic study of atmospheric dust and particulates from majorriver systems // Earth planet. sci. lett. 1984. V. 70.
- P. 221-236.
- 14. *Liew T.C.*, *Hofmann A.W*. Precambrian crustal components, plutonic associations, plate environment of the Hercynian fold Belt of central Europe: indications from a Nd and Sr isotopic study // Contrib. Mineral. Petrol. 1988. V. 98. P. 129–138.
- 1988. V. 98. P. 129–138.
 15. *Liew T.C.*, *McCulloch M.T.* Genesis of granitoid batholiths of Peninsular Malaysia and implications for model of crustal evolutions: evidence from a Nd-Sr isotopic and U-Pb zircon study // Geochimica et cosmochimica acta. 1985. V. 49, No. 2. P. 587–600.