ПЕТРОЛОГИЯ, ГЕОХИМИЯ

НОВЫЕ ДАННЫЕ О ПЕРМОТРИАСОВЫХ БАЗАЛЬТАХ ИЗ ФУНДАМЕНТА ЗАПАДНО-СИБИРСКОГО НЕФТЕГАЗОНОСНОГО МЕГАБАССЕЙНА: МИНЕРАЛОГИЯ, ГЕОХИМИЯ, ОТНОШЕНИЯ ИЗОТОПОВ РЬ

© 2017 г. С. В. Берзин, К. С. Иванов, М. В. Зайцева

Пермотриасовые трапповые базальты распространены на очень большой площади Сибирской плиты и в доюрском фундаменте Западно-Сибирской плиты вплоть до Среднего Урала на западе, до Тимано-Печерского региона, а также Карского и Баренцева морей – на севере. В фундаменте Западно-Сибирской плиты они преимущественно слагают рифты и грабены и широко присутствуют на поверхности фундамента в его центральной, западной, восточной и северных частях [Иванов и др., 2016; Ivanov et al., 2016; и др.]. По сравнению

Рис. 1. Положение опробованных скважин на тектонической карте фундамента Западно-Сибирской плиты [по: Тектоническая..., 2004, с упрощениями].

с трапповыми базальтами Сибирской платформы пермотриасовые вулканиты фундамента Западно-Сибирской плиты изучены существенно хуже преимущественно за счет отсутствия естественных обнажений. Задачи исследования – изучение минерального состава, геохимических особенностей и изотопных отношений свинца в представительных образцах пермотриасовых базальтов из разных районов Западно-Сибирской плиты.

В ходе данной работы изучены образцы пермотриасовых базальтов из скважин Ен-Яхинская СГ-7, с глубин 6428, 8009 и 8250 м; Тюменская СГ-6, 6975 м; Уренгойская 414-р, 5470.54 м (северная часть Западно-Сибирской плиты); Западно-Чистинная 501, 3500 м (Юганско-Колтогорская зона); Усть-Иусская 8000, 1794 м; Северо-Шушминская 10208, 2037 м (Шаимский НГР); 27 Лекосская, 2575.5 и 2577.5 м (восточная часть ХМАО) (рис. 1).

Все анализы выполнены в ИГТ УрО РАН. Изучение состава минералов и съемку в отраженных электронах осуществляли на электронно-зондовом микроанализаторе Cameca SX-100 в ИГГ УрО РАН, аналитик Д.А. Замятин. Содержание главных породообразующих оксидов определяли методом рентгено-флуоресцентного анализа на приборах СРМ-18 и XRF-1800, аналитики Н.П. Горбунова, Л.А. Татаринова, Т.М. Ятлук, В.П. Власов, Г.С. Неупокоева. Микроэлементный состав проб определяли методом ICP-MS на приборе ELAN-9000, аналитики Н.Н. Адамович, Д.В. Киселева.

Изотопные отношения измеряли методом Tl_N MC ICP-MS на многоколлекторном масс-спектрометре с индуктивно связанной плазмой Neptune Plus. Процедура подготовки образцов для анализа была следующей: кислотное вскрытие (HF + HNO₃) при 120°C в закрытых сосудах PFA Savillex® с последующей обработкой HCl; хроматографическое выделение свинца на анионообменной смоле Bio Rad AG 1 × 8 по стандартной схеме HBr-HCl [Kamber, Gladu, 2009]. Параметры измерения на MC ICP-MS Neptune Plus: ионные пучки изотопов свинца измеряли в статическом режиме на семи коллекторах Фарадея – ²⁰²Hg (коллектор L3-F), ²⁰³Tl (L2-F), ²⁰⁴Pb (L1-F), ²⁰⁵Tl (C-F), ²⁰⁶Pb (H1-F), ²⁰⁷Pb (H2-F) и ²⁰⁸Pb (H3-F); общее время измерения –

Глубина	2577	7.5 м	257	75.5 м
Анализ	38	39	67	68
SiO ₂	49.00	49.76	48.74	49.38
TiO ₂	1.27	1.21	2.10	1.72
Al ₂ O ₃	4.22	4.03	3.67	3.96
Cr_2O_3	0.16	0.22	0.00	0.00
FeO*	9.66	8.82	10.16	9.94
MnO	0.16	0.16	0.20	0.21
MgO	13.95	14.45	12.51	13.11
CaO	21.65	21.58	21.36	21.44
Na ₂ O	0.51	0.40	0.64	0.55
K ₂ O	0.00	0.00	0.00	0.00
Сумма	100.58	100.63	99.41	100.34
Формульн	ые коэффиц	иенты (в по	ересчете на	а 4 катиона)
Si	1.81	1.83	1.84	1.84
Ti	0.04	0.03	0.06	0.05
Al	0.18	0.18	0.16	0.17
Fe	0.30	0.27	0.32	0.31
Mg	0.77	0.79	0.70	0.73
Ca	0.86	0.85	0.86	0.86
Na	0.04	0.03	0.05	0.04
f	0.28	0.26	0.31	0.30

Таблица 1. Состав клинопироксенов из пермотриасовых базальтов скважины Лекосская 27, мас. %

Примечание. FeO* – сумма двух- и трехвалентного железа в пересчете на двухвалентное, $f - Fe/(Fe + Mg)_{MOZ}$.

Рис. 2. Базальт из скважины 27 Лекосская с глубины 2575.5 м.

Срх – клинопироксен, Pl – плагиоклаз, Ti-Mgt – титаномагнетит. Красным показаны точки микрозондовых анализов, номера анализов соответствуют номерам в табл. 1.

около 7 мин; мощность радиочастотного генератора – до 950 Вт; расход плазмообразующего газа Ar – 15 л/мин; расход вспомогательного газа Ar – 0.9 л/мин; расход транспортирующего газа Ar – до 1 л/мин. Параметры масс-спектрометра оптимизировали на ежедневной основе для достижения максимальной интенсивности сигнала свинца по стандарту NIST SRM 981. Результаты изотопных отношений свинца нормировались по эталонному значению ²⁰³Tl/²⁰⁵Tl = 0.418922 по экспоненциальному закону (талийсодержащую метку вводили в раствор образца перед измерением); к изотопным отношениям свинца ²⁰⁴Pb/²⁰⁶Pb, ²⁰⁴Pb/²⁰⁷Pb, ²⁰⁴Pb/²⁰⁸Pb применяли коррекцию интерференций по отношению ²⁰²Hg/²⁰⁴Hg = 4.350370. Правильность и воспроизводимость измерений изотопного состава свинца контролировали повторными измерениями стандарта NIST SRM 981: ²⁰⁴Pb/²⁰⁶Pb = 0.059061 ± 2, ²⁰⁸Pb/²⁰⁶Pb = 2.16799 ± 3, ²⁰⁷Pb/²⁰⁶Pb = 0.914514 ± 9 (2 σ_{en} по 21 измерению).

Среди изученных образцов присутствуют как относительно "свежие" базальты, например из скважины 27 Лекосская 2575.5 и 2577.5 м, сложенные клинопироксеном и основным плагиоклазом, так и в значительной степени зеленокаменноизмененные. Примером последних может быть Ен-Яхинская СГ-7, с глубин 6428, 8009 и 8250 м. Неизмененные базальты имеют офитовую структуру (рис. 2). В образцах из скважины 27 Лекосская (2575.5, 2577.5 м) клинопироксен представлен диопсидом-авгитом с железистостью f 0.26-0.31 и содержаниями волластонитового минала 44-46% (табл. 1). В клинопироксене отмечены примеси TiO₂ - 1.2-2.1%, MnO - 0.16-0.21, Cr₂O₃ - до 0.22%. Зерна плагиоклаза в матрице данных образцов имеют зональное строение: центральная часть сложена лабрадором № 62–69, периферия – андезином № 35-40. Встречены отдельные зерна санидина с содержаниями К = 0.30-0.47 формульных единиц (ϕ . e.), Na = 0.46–0.61, Ca 0.06–0.10 ϕ . e. Cpeди акцессорных минералов установлены зерна титаномагнетита. В зеленокаменно-измененных разностях базальтов плагиоклаз замещен альбитом и пренитом, а фемические минералы – хлоритом (клинохлор-шамозит), эпидотом и пумпеллиитом. Состав минералов зеленокаменно-измененных базальтов скважины Ен-Яхинская СГ-7 описан в наших более ранних работах [Берзин и др., 2016а, б]. Встречаются миндалекаменные разности базальтов, миндалины в которых выполнены пренитом, халцедоном и кальцитом. Кальцит включает примеси FeO – до 2.50%. MnO – до 1.00. MgO – до 0.75%.

Изученные образцы пермотриасовых вулканитов относятся к толеитовым базальтам и пикробазальтам (SiO₂ = 44–51%) нормальной щелочности, низко- и умеренно-калиевой сериям с содержаниями TiO₂ = 0.9–1.3% и умеренной железистостью f = 0.38–0.51 (табл. 2). Исследованные базальты характеризуются отрицательными наклонными трендами распределения РЗЭ (La_n/Yb_n = 2.2–16.2), сумма РЗЭ = 73–190 г/т (табл. 3). Во всех проанализированных образцах присутствует слабая отрицательная Еu-аномалия (Eu_n/Eu_n* = 0.68–0.98) (рис. 3а). На мультиэлементной диаграмме в про-

Проба	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	П.п.п.	Сумма
3-Чи501/3500	44.26	1.07	18.72	5.69	4.1	0.146	6.56	5.00	2.40	0.11	0.15	12.0	100.19
Е-ЯхСГ-7/8009	50.95	0.88	14.78	5.94	4.6	0.178	8.92	5.35	2.86	1.17	0.15	4.0	99.60
Е-ЯхСГ-7/8250	51.01	1.30	14.70	8.54	4.2	0.174	6.50	6.03	2.66	0.26	0.22	4.5	99.92
Е-ЯхСГ-7/7673	44.67	0.98	14.19	6.13	5.2	0.183	5.98	12.12	2.44	0.19	0.25	7.6	99.75

Таблица 2. Химический состав пермотриасовых базальтов из фундамента Западно-Сибирского бассейна, мас. %

Примечание. З-Чи501/3500 – Западно-Чистинная 501, 3500 м; Е-ЯхСГ-7/8009 – Ен-Яхинская СГ7, 8009 м; Е-ЯхСГ-7/8250 – Ен-Яхинская СГ7, 8250 м; Е-ЯхСГ-7/7673 – Ен-Яхинская СГ7, 7673 м.

Рис. 3. Спайдер-диаграммы распределения РЗЭ (а) и некогерентных элементов (б), нормированных соответственно на CI-хондрит и примитивную мантию [Sun, McDonough, 1989].

1 – нормально-щелочные пермотриасовые базальты фундамента Западно-Сибирской плиты [Медведев и др., 2003]; 2 – нормально-щелочные пермотриасовые базальты бассейна р. Северная Сосьва в западной части Западно-Сибирской плиты [Батурина и др., 2005; Иванов и др., 2016; и др.]; 3, 4 – средние составы пермотриасовых базальтов рифтогенного (4) и по-кровного (3) этапов Сибирской платформы [Альмухамедов и др., 2004].

бах наблюдаются минимумы по Rb, Th, Y, слабовыраженный минимум Nb и Ta, а также максимумы U, Ba (рис. 3б). Базальты имеют большой разброс в содержании Sr - 60-1389 г/т. В целом по характеру распределения РЗЭ и несовместимых элементов рассмотренные образцы близки к пермотриасовым нормально-щелочным базальтам из фундамента Западно-Сибирской плиты [Батурина и др., 2005; Медведев и др., 2003; Сараев и др., 2009] и пермотриасовым трапповым базальтам Тунгусской синеклизы [Альмухамедов и др., 2004]. Однако по сравнению с ними стоит отметить наличие в некоторых пробах аномально высоких содержаний U (до 7.9 г/т), Ва (до 3974), Sr (до 1389 г/т), а также пониженных содержаний Ү (12-37 г/т), что выразилось в повышенных значениях отношения Sr/Y – 2–105.

Данные предшественников по изотопии свинца для пермотриасовых базальтов фундамента Западно-Сибирской плиты практически отсутствуют [Берзин и др., 2016а, б]. Начальные изотопные отношения Pb, рассчитанные для возраста 250 млн лет, в изученных пробах варьируют в пределах $^{206}Pb/^{204}Pb = 17.331 - 19.536$, $^{207}Pb/^{204}Pb = 15.492 - 15.492$ 15.607, ²⁰⁸Pb/²⁰⁴Pb = 37.541–38.097 (табл. 4). Большая часть проанализированных проб по соотношениям изотопов Рь попадает в поле составов трапповых базальтов Сибирской платформы [Wooden et al., 1993] (рис. 4), что, вероятно, указывает на общий источник базальтового вулканизма. Однако пробы из скважин Западно-Чистинная 501 (3500 м) и Уренгойская 414-р (5470.54 м) (центральная и северная части Западно-Сибирской плиты) отклоняются от данного поля составов в сторону повышенного отношения U/Pb, что может быть связано с влиянием контаминированного корового материала. Стоит отметить, что обе эти скважины расположены в пределах центральной "осевой" зоны развития позднепермских-раннетриасовых рифтовых структур в фундаменте Западно-Сибирской плиты, но в других скважинах из этой центральной "осевой" зоны (Ен-Яхинская СГ-7, Тюменская СГ-6) такие аномалии не наблюдаются.

Таким образом, в нашей работе приводятся новые данные о соотношении изотопов Pb в представительных образцах пермотриасовых базальтов из

БЕРЗИН и др.

			,								
Эле	УИУ	СШу	Уренг	3 Uz 501/	27 Ter/	27 Ter/	Тюм.	Е-Ях	Е-Ях	Е-Ях	Е-Ях
ОЛС- мент	8000/	10208/	414-p/	3500	27JICK/ 2577.5	2751CK/ 2575-5	СГ-6/	СГ-7/	СГ-7/	СГ-7/	СГ-7/
MCHI	7194	2037	5470-5486	5500	2311.3	2313.3	6975	428	8009	8250	7673
Li	4.372	8.470	12.971	5.210	4.378	4.507	10.662	8.825	8.200	12.300	11.000
Be	1.106	1.228	1.549	0.371	0.593	0.732	0.878	1.108	0.800	0.900	1.300
Sc	19.621	19.211	4.053	31.446	18.412	17.795	31.781	16.491	23.800	23.800	20.700
Ti	9345	8734	5313	4361	5564	5509	15383	12647	4106	5694	5063
V	221.23	235.67	57.822	160.57	163.82	164.63	193.25	161.14	106.00	110.00	124.00
Cr	54.275	15.100	9.043	132.25	220.08	209.37	199.35	115.70	189.00	57.000	19.000
Mn	890.30	1319.00	492.77	811.66	752.60	914.84	2080.60	1286.10	618.00	592.00	671.00
Co	29.010	33.537	10.204	27.885	30.098	75.495	53.851	26.439	38.000	24.000	44.000
Ni	58.490	33.746	8.500	29.621	122.910	163.010	57.133	78.231	14.000	19.000	12.000
Cu	60.660	47.908	18.858	14.355	62.180	61.427	83.395	45.742	13.000	21.000	21.000
Zn	97.390	106.130	64.433	57.837	42.888	101.560	139.510	58.645	66.000	99.000	83.000
Rb	23.219	19.320	46.488	2.743	11.634	11.329	0.575	49.019	24.000	5.000	3.000
Sr	458.64	569.3	974.55	156.64	1389	1377.1	66.813	65.527	73.000	441.00	60.000
Y	23.745	21.309	11.702	20.245	13.287	14.422	24.406	15.889	22.100	36.700	30.300
Zr	154.98	169.48	150.66	95.673	104.43	103.777	96.950	182.150	86.000	146.00	150.00
Nb	15.349	13.008	21.152	4.691	8.148	7.932	13.748	53.006	7.100	7.800	11.200
Cd	0.265	0.302	0.218	0.030	0.167	0.184	0.198	0.250	0.050	0.070	0.090
Sn	1.444	1.252	1.717	1.063	0.604	0.580	1.002	1.545	1.100	1.900	2.300
Sb	0.056	0.100	0.495	0.194	0.046	0.044	0.063	0.642	0.300	2.600	0.700
Те	0.005	H/o	H/o	0.010	H/o	H/o	H/o	H/o	0.010	0.020	0.040
Cs	0.553	1.037	0.715	0.588	0.107	0.102	0.090	2.393	0.170	0.330	0.140
Ba	511.21	2808.0	3974.7	180.94	836.11	814.07	125.23	357.76	397.00	338.00	119.00
La	30.346	33.496	31.778	9.837	34.321	33.862	11.954	25.485	14.990	19.260	20.180
Ce	69.406	77.319	60.569	23.982	77.599	76.856	28.703	52.645	33.490	43.650	44.670
Pr	8.488	9.622	7.119	3.252	9.502	9.486	3.876	6.086	4.310	5.940	5.650
Nd	34.445	38.722	25.360	14.360	36.916	37.386	17.477	23.503	17.680	25.500	23.250
Sm	6.988	7.238	4.565	3.541	6.306	6.275	4.556	4.658	4.120	6.530	5.650
Eu	1.891	2.369	1.520	0.988	1.965	1.937	1.643	1.539	1.100	1.560	1.330
Gd	7.464	8.742	5.946	3.967	6.277	6.594	5.718	5.430	4.850	7.330	6.310
Tb	0.949	0.888	0.525	0.656	0.627	0.628	0.874	0.660	0.740	1.200	0.990
Dy	5.557	4.906	2.756	4.419	3.216	3.356	5.372	3.683	4.540	7.300	6.190
Но	1.129	1.000	0.538	0.973	0.658	0.683	1.114	0.765	0.950	1.580	1.320
Er	3.319	2.880	1.527	3.022	1.844	1.967	3.139	2.111	2.890	4.810	4.070
Tm	0.487	0.430	0.208	0.444	0.258	0.285	0.443	0.307	0.420	0.710	0.630
Yb	3.250	2.800	1.364	3.041	1.745	1.882	2.843	1.940	2.790	4.800	4.270
Lu	0.502	0.414	0.199	0.471	0.267	0.283	0.382	0.298	0.430	0.730	0.650
Hf	4.468	4.762	4.164	3.237	2.785	2.631	3.229	4.515	2.790	4.820	4.550
Та	1.067	0.862	1.485	0.504	0.496	0.470	1.021	3.809	1.710	1.660	2.950
Tl	0.108	0.116	0.536	0.017	0.018	0.031	0.008	0.271	0.280	0.300	0.150
Pb	8.919	8.653	19.287	2.375	8.516	8.278	2.382	3.794	2.720	7.000	5.170
Bi	0.026	0.035	0.069	0.008	0.006	H/o	H/o	H/o	0.010	0.010	0.010
Th	3.701	4.096	7.362	2.156	2.062	1.956	0.856	3.427	2.960	3.960	5.580
U	1.587	1.421	7.298	0.789	1.737	1.729	0.663	1.202	4.240	5.090	7.910

Таблица 3. Элементный состав (по данным ICP-MS) пермотриасовых базальтов из фундамента Западно-Сибирской плиты, г/т

Примечание. УИУ8000/7194 – Усть-Иусская 8000, 1794 м; СШу10208/2037 – Северо-Шушминская 10208, 2037 м; Уренг414-р/5470–5486 – Уренгойская 414-р, 5470.54 м; З-Чи501/3500 – Западно-Чистинная 501, 3500 м; 27Лек/2577.5 – 27 Лекосская, 2575.5 м; 27Лек/2575.5 – 27 Лекосская, 2577.5 м; Тюм.СГ-6/6975 – Тюменская СГ-6, 6975 м; Е-ЯхСГ-7/6428 – Ен-Яхинская СГ-7, 6428 м; Е-ЯхСГ-7/8009 – Ен-Яхинская СГ7, 8009 м; Е-ЯхСГ-7/8250 – Ен-Яхинская СГ7, 8250 м; Е-ЯхСГ-7/7673 – Ен-Яхинская СГ7, 7673 м.

разных районов доюрского фундамента Западно-Сибирской плиты. Показано, что по геохимическим особенностям и изотопному составу Pb эти базальты во многом схожи с пермотриасовыми трапповыми базальтами Сибирской платформы. Изотопные отношения Pb в пробах базальтов из двух скважин Западно-Чистинной 501 (3500 м) и Уренгойской 414-р (5470.54 м) отклоняются в сторону повышенного отношения U/Pb.

Авторы благодарны всем аналитикам, участвовавшим в работе, и В.С. Бочкареву за предоставленные образцы скважины Уренгойская 414р.

ЕЖЕГОДНИК-2016, Тр. ИГГ УрО РАН, вып. 164, 2017

Проба	Измеренные						Начальные			
	206Pb/204Pb	SE	²⁰⁷ Pb/ ²⁰⁴ Pb	SE	²⁰⁸ Pb/ ²⁰⁴ Pb	SE	206Pb/204Pb	²⁰⁷ Pb/ ²⁰⁴ Pb	²⁰⁸ Pb/ ²⁰⁴ Pb	
УИУ8000/1794	18.569	0.004	15.6106	0.0004	38.394	0.001	18.061	15.5846	38.023	
Сшу10208/2037	18.511	0.004	15.6036	0.0007	38.414	0.002	18.044	15.5797	37.990	
Уренг414р/5470-5486	20.662	0.005	15.6579	0.0008	38.457	0.002	19.539	15.6004	38.101	
3-Чи501/3500	19.555	0.005	15.6567	0.0007	38.499	0.002	18.607	15.6082	37.688	
27Лек/2577.5	18.616	0.004	15.5354	0.0004	37.778	0.001	18.039	15.5059	37.568	
27Лек/2575.5	18.644	0.004	15.5307	0.0004	37.755	0.001	18.054	15.5004	37.550	
СГ-6/6975	18.807	0.004	15.6020	0.0005	38.165	0.001	18.028	15.5621	37.868	
Е-ЯхСГ-7/6428	18.686	0.004	15.5434	0.0004	38.498	0.001	17.785	15.4973	37.689	
Е-ЯхСГ-7/8009	22.070	0.005	15.7348	0.0006	38.631	0.0015	17.355	15.4933	37.613	
Е-ЯхСГ-7/8250	20.213	0.005	15.6349	0.0005	38.133	0.0013	18.082	15.5257	37.617	

Таблица 4. Изотопные отношения свинца в пермотриасовых базальтах

Примечание. УИУ8000/7194 – Усть-Иусская 8000, 1794 м; СШу10208/ 2037 – Северо-Шушминская 10208, 2037 м; Уренг414-р/5470–5486 – Уренгойская 414-р, 5470.54 м; З-Чи501/3500 – Западно-Чистинная 501, 3500 м; 27Лек/2577.5 – 27 Лекосская, 2575.5 м; 27Лек/2575.5 – 27 Лекосская, 2577.5 м; Тюм.СГ-6/6975 – Тюменская СГ-6, 6975 м; Е-ЯхСГ-7/6428 – Ен-Яхинская СГ-7, 6428 м; Е-ЯхСГ-7/8009 – Ен-ЯхинскаяСГ7, 8009 м; Е-ЯхСГ-7/8250 – Ен-Яхинская СГ7, 8250 м.

Рис. 4. Диаграммы ²⁰⁶Pb/²⁰⁴Pb–²⁰⁷Pb/²⁰⁴Pb, ²⁰⁶Pb/²⁰⁴Pb–²⁰⁸Pb/²⁰⁴Pb для пермотриасовых базальтов из фундамента Западно-Сибирской плиты.

Обозначены линии временной эволюции верхней коры, орогенов, нижней коры и мантии [Zartman, Haines, 1988], зеленое поле – трапповые базальты Сибирской платформы [Wooden et al., 1993]. Начальные отношения изотопов Pb рассчитаны исходя из возраста 250 млн лет. УИУ8000/7194 – Усть-Иусская 8000, 1794 м; СШу10208/2037 – Северо-Шушминская 10208, 2037 м; Уренг414-р/5470–5486 – Уренгойская 414-р, 5470.54 м; З-Чи501/3500 – Западно-Чистинная 501, 3500 м; 27Лек/2577.5 – 27 Лекосская, 2575.5 м; 27Лек/2575.5 – 27 Лекосская, 2577.5 м; Тюм.СГ-6/6975 – Тюменская СГ-6, 6975 м; Е-ЯхСГ-7/6428 – Ен-Яхинская СГ-7, 6428 м; Е-ЯхСГ-7/8009 – Ен-Яхинская СГ7, 8009 м; Е-Ях СГ-7/8250 – Ен-Яхинская СГ7, 8250 м.

Исследования проведены в рамках Программы "Арктика" Президиума РАН и при поддержке проекта УрО РАН № 15-18-5-15 "Уралиды в фундаменте Западно-Сибирского нефтегазоносного мегабассейна".

СПИСОК ЛИТЕРАТУРЫ

Альмухамедов А.И., Медведев А.Я., Золотухин В.В. Вещественная эволюция пермотриасовых базальтов Сибирской платформы во времени и пространстве // Петрология. 2004. Т. 12, № 4. С. 339–353.

ЕЖЕГОДНИК-2016, Тр. ИГГ УрО РАН, вып. 164, 2017

- Батурина Т.П., Сараев С.В., Травин А.В. Каменноугольные и пермотриасовые вулканиты в зоне сочленения Урала и Западной Сибири // Геология и геофизика. 2005. Т. 46, № 5. С. 504–516.
- Берзин С.В., Иванов К.С., Зайцева М.В. Пермотриасовые базальты фундамента Западно-Сибирского бассейна, вскрытые сверхглубокой скважиной Ен-Яхинская СГ-7 // Литосфера. 2016а. № 6. С. 117–128.
- Берзин С.В., Иванов К.С., Бочкарев В.С., Зайцева М.В. Изотопия (Pb, He, Sr, Nd), минералогия и геохимия пермотриасовых базальтов Западно-Сибирского мегабассейна, вскрытых сверхглубокой скважиной Ен-Яхинская СГ-7 // Горные ведомости. 2016б. № 3-4

(142–143). C. 28–43.

- Иванов К.С., Федоров Ю.Н., Ерохин Ю.В., Пономарев В.С. Геологическое строение фундамента Приуральской части Западно-Сибирского нефтегазоносного мегабассейна. Екатеринбург: ИГГ УрО РАН, 2016. 302 с.
- Медведев А.Я., Альмухамедов А.И., Кирда Н.П. Геохимия пермотриасовых вулканитов Западной Сибири // Геология и геофизика. 2003. Т. 44, № 1–2. С. 86–100.
- Сараев С.В., Батурина Т.П., Пономарчук В.А., Травин А.В. Пермотриасовые вулканиты Колтогорско-Уренгойского рифта Западно-Сибирской геосинеклизы // Геология и геофизика. 2009. Т. 50, № 1. С. 4–20.
- Тектоническая карта фундамента Западно-Сибирской плиты / под ред. В.С. Суркова; сост. О.Г. Жеро, А.Э. Конторович, В.П. Коробейников, В.Н. Крамник, Л.В. Смирнов. М., 2004.
- Ivanov K.S., Erokhin Yu.V., Ponomarev V.S., Pogromskaya O.E., Berzin S.V. Geological Structure of the Basement of Western and Eastern Parts of the West-

Siberian Plain // Int. J. Environmental Sci. Education. 2016. V. 11, no. 4. P. 6409–6432.

- Kamber B.S., Gladu A.H. Comparison of Pb Purification by Anion-Exchange Resin Methods and Assessment of Long-Term Reproducibility of Th/U/Pb Ratio Measurements by Quadrupole ICP-MS // Geostandards Geoanalytical Res. 2009. V. 33, no. 2. P. 169–181.
- Sun S., McDonough W.F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes // Geol. Soc., Special Publ. 1989. V. 42. P. 313–345.
- Wooden J.L., Czamanske G.K., Fedorenko V.A., Arndt N.T., Chauvel C., Bouse R.M., King B.W., Knight R.J., Siem D.F. Isotopic and trace-element constraints on mantle and crustal contributions to Siberian continental flood basalts, Noril'sk area, Siberia // Geochim. Cosmochim. Acta. 1993. V. 57. P. 3677–3704.
- Zartman R.E., Haines S.M. The plumbotectonic model for Pb isotopic systematics among major terrestrial reservoirs-A case for bi-directional transport // Geochim. Cosmochim. Acta. 1988. V. 52. P. 1327–1339.