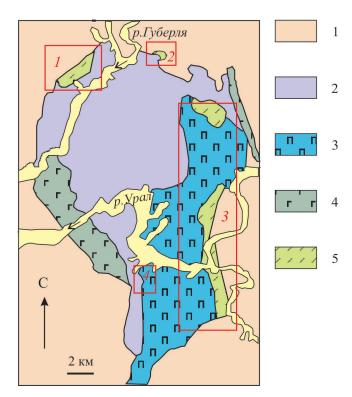
ПЕТРОЛОГИЯ, ГЕОХИМИЯ

СОСТАВ И УСЛОВИЯ ОБРАЗОВАНИЯ МЕТАМОРФИЧЕСКИХ ПОРОД УЛЬТРАОСНОВНОГО СОСТАВА В ВОСТОЧНОМ ЭКЗОКОНТАКТЕ ХАБАРНИНСКОГО ПОЛИФОРМАЦИОННОГО ГАББРО-ГИПЕРБАЗИТОВОГО МАССИВА

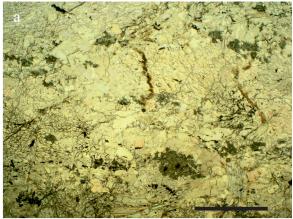

© 2017 г. А. П. Бирюзова

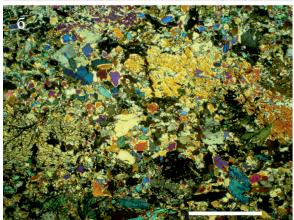
Хабарнинский полиформационный габбро-гипербазитовый массив расположен в 30 км к западу от города Орск. Большая часть массива сложена сильно деплетированными гарцбургитами с подчиненным количеством дунитов (рис. 1). Перидотиты сопровождаются расслоенными интрузиями габбро, породами габбро-плагиогранитной серии, комплексом параллельных диабазовых даек и пиллоу-лавами, которые в совокупности можно рассматривать как фрагмент островодужного офиолитового комплекса. На востоке массива выделяется восточно-хабарнинский комплекс (ВХК), который обладает рядом особенностей состава, позволяющих отождествлять его с концентрическизональными дунит-клинопироксенит-габбровыми массивами Урало-Аляскинского типа [Варлаков, 1978; Балыкин и др., 1991]. Хабарнинский массив входит в аллохтонную структуру, в которую включены и метаморфические породы, подстилающие магматические комплексы пород [Херасков, 1971]. На поверхности метаморфические породы обнажаются в четырех блоках: Сучковском, Белошапкинском, Тонатарском и Восточном (см. рис. 1).

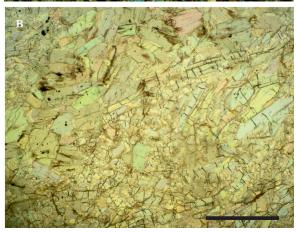
Объектом данного исследования являются метаморфические породы ультраосновного состава, обнаруженные в Восточном блоке. В составе Восточного блока метаморфических пород мы выделили две толщи [Пушкарев и др., 2004]. Нижняя представлена рассланцованными мелкозернистыми эпидотовыми амфиболитами мощностью 700-800 м, Р-Т параметры которых отвечают эпидот-амфиболитовой фации. Субстратом для них послужили вулканогенные породы [Бирюзова, Пушкарев, 2005]. Верхняя толша выражена массивными или тонкополосчатыми амфиболитами с многочисленными согласными прослоями и линзами гранатовых амфиболитов, гранатитов, двупироксеновых кристаллических сланцев, мелкозернистых кварцитов и кварцитогнейсов, мощность толщи 100-200 м. Р-Т параметры пород верхней толщи отвечают амфиболитовой и гранулитовой фациям. Субстратом для этой толщи послужили вулканогенно-осадочные породы [Бирюзова, Пушкарев, 2006].

Именно в верхней толще найдены метаморфические породы ультраосновного состава в ви-

де будин размером до 0.5 м среди массивных амфиболитов (51° 04.199 с.ш., 58° 10.155 в.д., Пулковская система координат). Состав пород варьирует от амфиболитов с содержанием амфибола до 85% до шпинель-оливин-ортопироксеновых пород с содержанием шпинели до 20%, оливи-




Рис. 1. Схема геологического строения Хабарнинского ультрамафит-мафитового аллохтона на Южном Урале (по данным ПГО "Оренбурггеология").


1 — вмещающие вулканогенные, осадочные и метаморфические породы палеозоя; 2 — офиолитовый дунит-гарцбургитовый комплекс; 3 — восточно-хабарнинский дунит-клинопироксенит-вебстерит-габбро-норитовый комплекс; 4 — аккермановский верлитгаббро-плагиогранитный комплекс, комплекс параллельных диабазовых даек; 5 — метаморфические породы основания аллохтона.

Метаморфические блоки, включенные в структуру Хабарнинского аллохтона: I — Сучковский, 2 — Белошапкинский, 3 — Восточный, 4 — Тонатарский.

100 БИРЮЗОВА

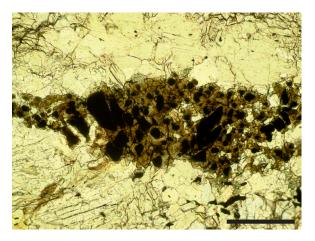


Рис. 2. Микроструктуры ультрамафитовых метаморфических пород в Восточном блоке Хабарнинского массива.

а, б — Хб-2219 шпинель-оливин-ортопироксен-амфиболовая порода, порфиробластовая и гранобластовая структура основной ткани: а — бесцветные минералы — ортопироксены, амфиболы, оливины, голубовато-зеленоватая шпинель, внутри которой находится черная хромшпинель, рудный черный минерал ильменит, Ник. II; б — то же, что на А, крупные зерна с желтой интерференционной окраской — ортопироксены, в левом углу с яркой зеленой интерференционной окраской — оливин, мелкие зерна с синими и красными интерференционными окрасками — амфибол, Ник Х. в — Хб-2218 — амфиболит, нематогранобластовая структура, бесцветный минерал — амфибол, Ник. II. Длина масштабной линейки 1 мм.

Рис. 3. Скопление зерен хромшпинели и шпинели в шпинель-оливин-ортопироксен-амфиболовой породе, X6-2219.

Длина масштабной линейки 0.2 мм. Ник. II.

на – до 30, ортопироксена – от 30 до 50%. Второстепенные и акцессорные минералы представлены плагиоклазом, биотитом, хромитом, ильменитом, цирконом. Ультрамафитовые метаморфические породы характеризуются массивной и полосчатой текстурой, мелкозернистой и среднезернистой структурой. Полосчатая текстура возникает за счет чередования светлого амфибола со слоями темного пироксена. Микроструктура пород нематогранобластовая, гранобластовая и порфиробластовая (рис. 2).

Оливин и ортопироксен широко представлены в пробах X6-2219, X6-2220 и X6-2222. Они образуют порфиробласты с неровными резорбированными краями размером от 1.0×1.5 до 2.0×3.0 мм. Зерна трещиноваты, по ним развивается амфибол. В шлифе оливин прозрачен, без спайности. Составы минералов приведены в табл. 1. Железистость оливина 0.19-0.20. Ортопироксены в шлифе бесцветны, обладают прямым погасанием, характеризуются невысокими содержаниями Al_2O_3- от 1.50 до 3.03 мас. %- и CaO- от 0.18 до 0.47. Железистость ортопироксена (0.16-0.19) соответствует бронзиту (см. табл. 1).

Амфибол представлен бесцветной магнезиальной роговой обманкой, образует длиннопризматические зерна размером от 0.15×0.60 до 0.2×2.0 мм. Содержание Al_2O_3 в нем изменяется от 6.3 до 9.7 мас. %, TiO_2- от 0.36 до 0.95 мас. %. (см. табл. 1). Железистость 0.11-0.14.

В породах широко развита **сине-зеленая шпинель**, которая образует скопления зерен от 0.05×0.10 до 0.5×2.5 мм. Внутри этих скоплений иногда находятся черные зерна хромита с содержанием $Cr_2O_3 - 51 - 54$ мас. %, вокруг них развиваются зерна хромшпинели с содержанием $Cr_2O_3 -$ от 12 до 7 мас. % (см. табл. 1, рис. 3).

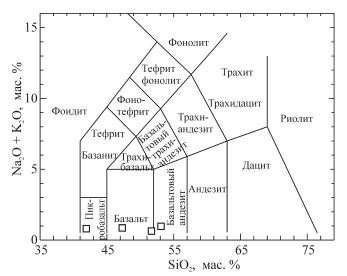
Таблица 1. Состав главных породообразующих минералов и акцессорных мафит-ультрамафитовых метаморфических пород, мас. %

№ п/п	1	2	3	4	5	6	7	8
SiO ₂	56.32	55.25	54.87	39.59	39.26	39.49	52.14	49.27
TiO ₂	0.10	0.11	0.16	0.00	0.00	0.00	0.47	0.55
Al_2O_3	1.74	3.03	2.54	0.01	0.00	0.00	6.37	8.20
Cr_2O_3	0.00	0.10	0.02	0.07	0.03	0.00	0.57	1.08
FeO*	11.56	11.12	11.26	18.24	18.37	17.72	4.78	4.70
MnO	0.50	0.39	0.47	0.39	0.46	0.43	0.21	0.19
MgO	29.76	29.41	29.71	41.31	41.48	42.60	19.91	19.55
CaO	0.26	0.21	0.27	0.03	0.01	0.02	12.14	11.96
Na ₂ O	0.00	0.00	0.01	0.02	0.00	0.01	0.56	0.69
K_2O	0.00	0.00	0.01	0.02	0.01	0.01	0.10	0.22
Сумма	100.24	99.62	99.31	99.68	99.62	100.27	97.26	96.40
	9	10	11	12	13	14	15	16
SiO_2	50.08	0.00	0.00	0.00	0.00	0.05	0.03	0.05
TiO ₂	0.79	0.00	0.06	0.06	0.08	0.05	51.41	55.62
Al_2O_3	9.40	12.12	10.75	53.69	58.22	65.22	0.17	0.19
Cr_2O_3	0.25	52.81	54.05	12.37	7.15	1.22	0.04	0.11
FeO*	5.01	29.45	30.10	18.70	17.09	15.30	41.37	39.13
MnO	0.17	0.46	0.49	0.24	0.18	0.23	2.34	1.16
MgO	18.26	4.76	4.78	14.61	15.77	17.37	2.03	3.43
CaO	12.23	0.00	0.01	0.02	0.00	0.01	1.73	0.21
Na ₂ O	0.83	H/o	H/o	H/o	H/o	H/o	H/o	H/o
K_2O	0.15	H/o	H/o	H/o	H/o	H/o	0.01	0.01
NiO	H/o	H/o	H/o	0.32	0.49	H/o	0.17	0.12
ZnO	H/o	H/o	H/o	H/o	H/o	H/o	0.01	0.00
Сумма	97.18	99.62	100.26	100.28	99.36	99.46	99.44	100.18

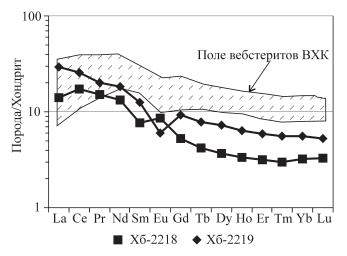
Примечание. Проба XБ-2219. 1–3 – ортопироксен, 4–6 – оливин, 7–9 – амфибол, 10–11 хромит, 12–13 – хромшпинель, 14 – шпинель, 15–16 – ильменит. FeO* – все железо в виде FeO. 16 – элемент не обнаружен. Анализы выполнены на рентгеновском микроанализаторе Cameca SX-100 в ИГГ УрО РАН, аналитик A.B. Михеева.

Таблица 2. Геотермометры и геобарометры для определения Р-Т параметров

Геотермометры, геобарометры	Литература	<i>T</i> , °С; <i>P</i> , кбар	
Оливин-шпинелевый геотермометр	[Ballhaus et al., 1991]	600–700 °C	
Ортопироксен-амфиболовый геотермометр	[Перчук, 1970]	650 °C	
Содержание СаО в ортопироксене, геотермометр	[Nickel, Brey, 1984]	600–650 °C	
Роговообманковый геотермометр	[Otten, 1984]	600–650 °C	
Амфиболовый геобарометр	[Hammastrom, Zen, 1986]	4.0–4.7 кбар	
То же	[Johnson, Rutherford, 1989]	4.0–4.7 кбар	
То же	[Schmidt, 1992]	4.0–4.7 кбар	


Для определения P-T параметров сосуществующих минералов мафит-ультрамафитовых метаморфических пород мы использовали четыре геотермометра и три амфиболовых геобарометра (табл. 2).

На классификационной диаграмме "сумма щелочей— SiO_2 " точки составов рассматриваемых пород попадают в поля базальтового андезита, базальта и пикробазальта (рис. 4). Все породы характеризуются высокими содержаниями MgO – от 23.5 до 27.0 мас. % – и низкой железистостью – 0.13–0.16. Также эти породы обладают близкими содержаниями SiO_2 — от 47.6 до 53.0 мас. % – и Al_2O_3 — от 5.5 до 7.4 мас. %, за исключением пробы X6-2220, в которой содержание SiO_2 составляет всего 41.5 мас. %, а Al_2O_3 достигает 12.7 мас. % (табл. 3). Содержание всех остальных петрохимических элементов у этих


пород сходны. Например, количество CaO изменяется от 4.5 до 7.6 мас. %, Na_2O – от 0.5 до 0.9, TiO_2 – от 0.30 до 0.85, P_2O_5 – от 0.02 до 0.32 мас. %. Содержание Rb и Sr в них низкое: 8–10 и 8–40 г/т соответственно. По составу эти породы сходны с магматическими ультраосновными породами – вебстеритами, но отличаются большим количеством Al_2O_3 и P_2O_5 , а также низкими содержаниями Sr.

Для двух проб X6-2219 и X6-2218 сделаны геохимические анализы, распределение РЗЭ у них отличное от такового у вебстеритов ВХК. Шпинель-оливин-ортопироксен-амфиболовая порода X6-2219 характеризуется высоким La/Yb, равным 5.2, и отрицательной Еи-аномалией. Амфиболит X6-2218 имеет спектр РЗЭ, параллельный спектру распределения X6-2219, только более низкого уровня, и по-

102 БИРЮЗОВА

Рис. 4. Положение составов ультрамафитовых метаморфических пород на классификационной диаграмме "сумма щелочей—SiO₂".

Рис. 5. Распределение РЗЭ в ультраосновных метаморфических породах, нормированных на стандартный углистый хондрит [Sun, 1982].

ложительную европиевую аномалиею, La/Yb = 4.3 (рис. 5).

Таким образом, проведено первое исследование ультраосновных метаморфических пород в Восточном блоке Хабарнинского полиформационного габбро-гипербазитового массива. Определены *P-T* параметры равновесия сосуществующих минералов, которые соответствуют верхам амфиболитовой фации метаморфизма. Субстратом для данных пород могли послужить ультраосновные магматические породы — вебстериты, но составы изучаемых метаморфических пород отличаются от таковых предполагаемых субстратов по ряду признаков. Можно предположить, что метаморфизм не был изохимическим либо субстратом для них послужила смесь пород.

Таблица 3. Содержание в ультраосновых метаморфических породах петрогенных элементов, мас. %, и редких элементов, Γ

элементов, г/т				
Элемент	Хб-2218	Хб-2219	Хб-2220	Хб-2222
SiO ₂	53.000	47.630	41.450	51.460
TiO ₂	0.310	0.850	0.690	0.520
Al_2O_3	6.260	7.420	12.740	5.480
Fe ₂ O ₃	2.770	5.280	6.320	5.450
FeO	4.300	3.800	3.800	2.400
MnO	0.150	0.200	0.160	0.170
MgO	23.550	24.670	27.000	26.350
CaO	6.960	7.630	4.510	6.090
Na ₂ O	0.900	0.800	0.750	0.500
K ₂ O	0.060	0.090	0.070	0.060
P_2O_5	0.020	0.320	0.150	0.140
П.п.п.	1.100	0.800	2.200	0.800
Сумма	99.390	99.480	99.830	99.420
Fe/(Fe + Mg)	0.140	0.160	0.160	0.130
Rb	8.000	10.000	12.000	10.000
Sr	8.000	40.000	37.000	14.000
Li	15.599	2.072	_	_
Ве	0.324	0.465	_	_
Sc	12.561	15.209	_	_
Ti	1579.422	4298.101	_	_
V	61.439	114.779	_	_
Cr	895.595	772.338	_	_
Co	75.328	71.538	_	_
Ni	916.682	1052.160	_	_
Cu	33.301	34.643	_	_
Zn	38.789	39.920	_	_
Zr	14.298	51.757	_	_
Nb	2.253	11.175	_	_
Ag	0.062	0.243	_	_
Cd	0.126	0.150	_	_
Sn	0.546	0.420	_	_
Sb	0.060	0.040	_	_
Te	0.038	0.009	_	_
Ba	5.128	41.788	_	_
La	4.599	9.587	_	_
Ce	14.856	22.235	_	_
Pr	1.979	2.628	_	_
Nd	8.424	11.533	_	_
Sm	1.573	2.539	_	_
Eu	0.659	0.467	_	_
Gd	1.450	2.579	_	_
Tb	0.210	0.388	_	_
Dy	1.256	2.478	_	_
Но	0.258	0.490	_	_
Er	0.715	1.336	_	_
Tm	0.104	0.196	_	_
Yb	0.713	1.229	_	_
Lu	0.713	0.180	_	
Hf	0.601	1.482	_	_
Та	0.001	0.584	_	_
W	22.520	44.120	_	_
**	22.320	77.120		

Примечание. Силикатные анализы пород выполнены рентгенофлюоресцентным методом на VRA-30, определения Rb и Sr – рентгено-флюоресцентным методом на CHV-18, остальные редкие элементы определяли методом ICP-MS на приборе ELLAN-9000 в ИГГ УрО РАН, аналитики Г.М. Ятлук, Н.П. Горбунова, Л. Татаринова, Д. Киселева.

Работа выполнена при финансовой поддержке РФФИ № 16-05-00202-а, 16-05-00508-а и инициативного проекта УрО РАН № 15-18-5-24.

СПИСОК ЛИТЕРАТУРЫ

- Балыкин П.А., Конников Э.Г., Кривенко А.П., Леснов Ф.П. и др. Петрология постгарцбургитовых интрузивов Кемпирсайско-Хабарнинской офиолитовой ассоциации (Южный Урал). Свердловск: УрО АН СССР, 1991. 160 с.
- Бирюзова А.П., Пушкарев Е.В. О химическом составе амфиболитов восточного обрамления Хабарнинского массива на Южном Урале // Ежегодник-2004. Екатеринбург: ИГГ УрО РАН, 2005. С. 106–112.
- Бирюзова А.П., Пушкарев Е.В. Метаморфические породы гранулитовой фации в составе Хабарнинского мафит-ультрамафитового аллохтона // Ежегодник-2005. Екатеринбург: ИГГ УрО РАН, 2006. С. 133–142.
- Варлаков А.С. Петрография, петрохимия и геохимия гипербазитов Оренбургского Урала. М.: Наука, 1978. 238 с.
- *Перчук Л.Л.* Равновесия породообразующих минералов. М.: Наука, 1970. 392 с.
- Пушкарев Е.В., Готтман И.А., Бирюзова А.П. Особенности геологического строения комплекса метаморфических пород в восточном экзоконтакте Хабарнинского массива на Южном Урале // Ежегодник-2003.

- Екатеринбург: ИГГ УрО РАН, 2004. С. 189–193.
- *Херасков Н.П.* Эбетинский шарьяж на Южном Урале // Геотектоника. 1971. № 4. С. 26–30.
- Ballhaus C., Berry R.F., Green D.H. High pressure experimental calibration of the olivine-orthopyroxenespinel oxygen geobarometer: implications for the oxidation state of the upper mantle // Contrib. Mineral. Petrol. 1991. V. 107. P. 27–40.
- Hammastrom J.M., Zen E. Aluminium in hornblende: an empirical igneous geobarometer // Mineralogist. 1986. V. 71. P. 1297–1313.
- Johnson M.C., Rutherford M.J. Experimental calibration of the aluminium in horblende geobarometerwith application to Long Valley caldera (California) volcanic rocks // Geology. 1989. V. 17. P. 837–884.
- Nickel K.G., Brey G. Subsolidus orthopyroxene-clinopyroxene systematics in the system CaO–MgO–SiO, to 60 kbar: A re-evaluation of the regular solution model // Contrib. Mineral. Petrol. 1984. V. 87. P. 35–42.
- Otten M.T. The origin of brown hornblende in the Artssjallet gabbros and dolerites // Contrib. Mineral. Petrol. 1984. V. 86. P. 185–199.
- Schmidt M.W. Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-inhornblende barometer // Contrib. Mineral. Petrol. 1992. V. 110. P. 304–310.
- Sun S.S. Chemical composition and origin of the Earth'primitive mantle // Geohim. Cosmohim. Acta. 1982. V. 46. P. 179–192.