— ПЕТРОЛОГИЯ, ГЕОХИМИЯ =

ГАББРО И ДОЛЕРИТЫ ИЗ ФРАГМЕНТОВ ОФИОЛИТОВОЙ АССОЦИАЦИИ СРЕДНЕГО УРАЛА: Rb-Sr И ¹⁴⁷Sm-¹⁴³Nd ИЗОТОПНЫЕ ОГРАНИЧЕНИЯ

© 2017 г. Ю. Л. Ронкин, И. В. Семенов

Продукты палеоокеанического и задугового надсубдукционного спредингового вулканизма, представленные комплексом параллельных долеритовых даек (в ассоциации с базальтовыми пиллоулавами), развиты на всем, почти 2500 км, субмеридиональном простирании Уральского складчатого пояса [Семенов, 2000; Пучков, 2012]. Серии тесно сближенных параллельных долеритовых даек секут как породы дунит-гарцбургитовой ассоциации, так и дунит-клинопироксенит-габбровой. В пакетах типа "дайка в дайке" плутониты массивов часто присутствуют в виде разного размера скринов между долеритовыми дайками. Практически повсюду на контакте с породами габбро-гипербазитовых комплексов долериты даек имеют четко выраженные краевые закаленные зоны, поэтому относительно более молодой геологический возраст долеритов дайкового комплекса по сравнению с возрастом пород обеих габбро-гипербазитовых ассоциаций не вызывает сомнений. Сложнее обстоит дело с геохронометрическими датировками и изотопно-геохимическими характеристиками долеритов даек и вмещающих их плутонитов габброгипербазитовых ассоциаций. Данные хронометрического возраста палеоокеанических базальтов и пространственно совмещенных с ними пород дунит-гарцбургитовой и дунит-клинопироксенит-габбровой ассоциаций, полученные методами изотопной геологии, в разных сегментах палеоспрединговой структуры Урала немногочисленны и противоречивы, что не является исключением и в отношении комплекса параллельных долеритовых даек и пород Платиноносного пояса Урала (ППУ) в Тагильском сегменте палеоокеанической спрединговой структуры Среднего Урала, где фрагменты параллельных долеритовых даек развиты в восточном, западном и южном обрамлениях Ревдинского габбро-гипербазитового массива (РГГМ) (рис. 1).

Первые сведения о Sm-Nd изотопной систематике габбро из скринов между дайками долеритов дайкового комплекса, обрамляющего РГГМ ППУ, а также габбро из самого массива, представленные в виде графиков в координатах ¹⁴⁷Sm/¹⁴⁴Nd–¹⁴³Nd–¹⁴⁴Nd, были опубликованы без приведения соответствующих табличных данных [Семенов, 2007]. Позже осуществлено представительное (n = 33) U-Pb SHRIMP-II датирование циркона из комплекса параллельных даек горы Азов на Среднем Урале [Иванов, Берзин, 2013]. К сожалению, в этой работе, судя по U-Pb SHRIMP-II данным из табл. 3 (с. 99), только 8 из 33 возрастов, вычисленных по отношениям ²⁰⁶Pb/²³⁸U (6 значений образца 108-Т₁ и 2 – 108-Т₂), воспроизводятся при пересчете корректно. Все остальные 25 значений, определенные по отношениям ²⁰⁷Pb/²³⁵U, ²⁰⁶Pb/²³⁸U, ²⁰⁷Pb/²⁰⁶Pb, не синхронизируются с предлагаемыми авторами на графиках с конкордией возрастными сведениями. Обескураживают значения возрастов, вычисленных по отношениям ²⁰⁷Pb/²⁰⁶Pb для циркона 106-1 и 107-1, поскольку ранжируются диапазоном 2477-6332 млн лет. Соответственно, дискордантность для этого циркона достигает 94.6%. Аналогичным образом выглядят и датировки, вычисленные по отношениям ²⁰⁷Рb/²³⁵U для этих же кристаллов. Совсем "экзотические" величины присущи и коэффициентам корреляции между отношениями ²⁰⁷Рb/²³⁵U и ²⁰⁶Pb/²³⁸U для циркона 106-1 и 107-1, которые после соответствующего пересчета превышают единичные значения. Рассмотрение графиков с конкордиями также позволяет выявить, что из рисунков (рис. 7 на с. 100, рис. 8 на с. 101), на которых представлена U-Pb SHRIMP-II аналитика, положение только 6 фигуративных точек циркона 108-Т₁ соответствует табличным данным. Остальные цифры табл. 3 (с. 99) не согласуются с графиками [Ahrens, 1955; Wetherill, 1956] этой статьи. Подобное обстоятельство в сочетании с новыми геохронометрическими сведениями и послужило основанием для написания настоящей работы.

Rb-Sr и ¹⁴⁷Sm-¹⁴³Nd датированию были подвергнуты следующие образцы: 1) габбро из средней части РГГМ (обр. P-1-1); 2) долерит из средней части дайки (обр. P-5-9) и габбро из скрина между долеритовыми дайками (обр. P-5-3) в западном (ревдинском) фрагменте комплекса параллельных долеритовых даек; 3) долерит из средней части дайки (обр. P-11-2) и габбро из скрина между долеритовыми дайками (обр. P-11-3) в восточном (дегтярском) фрагменте комплекса параллельных долеритовых даек; 4) долериты из средних частей даек (обр. А-2, А-10, А-34) в дайковом пакете со скринами базальтовых пиллоу-лав в азовском фрагменте комплекса параллельных долеритовых даек. Местоположение изученных образцов указано на рис. 1, а их коорди-

Рис. 1. Геологическая карта Ревдинско-Полевского района по данным геологической карты Урала масштаба 1:500 000 под редакцией И. Д. Соболева с дополнениями и интерпретацией авторов [Геологическая..., 1983; Семенов, 2000].

1-4 – комплексы континентальной рифтовой структуры: 1 – гранат-слюдяно-кварцевые и эпидот-амфиболитовые сланцы, гнейсы, амфиболиты, 2 – филлитокварциты, филлитизированные углисто-кремнисто-глинистые сланцы, кварцитопесчаники, 3 – филлиты, 4 – филлитизированные парасланцы, зеленые сланцы в ассоциации с диабазами и базальтами; 5–7 – комплексы океанической рифтовой структуры: 5 – океанические базальты, включая комплекс параллельных долеритовых даек, 6 – зеленые сланцы по базальтам и долеритам, 7 – амфиболиты и амфиболовые сланцы; 8–10 – вмещающие породы для океанических базальтов: 8 – габбро, габбродиориты, пироксениты, горнблендиты, перидотиты, 9 – серпентиниты, 10 – пироксенплагиоклазовые и амфибол-плагиоклазовые роговики; 11–13 – постспрединговые силуродевонские комплексы: 11 – вулканиты контрастной формации, 12 – вулканиты непрерывно-дифференцированной формации, 13 – осадочно-вулканогенная толща; 14 – участки детального изучения разреза спрединговой структуры (1 – дегтярский, 2 – ревдинский, 3 – азовский); 15 – тектонические нарушения; 16 – границы разных вещественных комплексов; 17 – места взятия и номера образцов пород, подвергнутых изотопно-геохимическим исследованиям.

ЕЖЕГОДНИК-2016, Тр. ИГГ УрО РАН, вып. 164, 2017

ал
ď
\sim
ЙЙ
H
ē
ð
\leq
ca
ek
Ĕ
Į
õ
1 C
0LC
BC
2
ЗЙ
Ħ
Ľa
Η
Me
II.
ğ
ф
2
õ
Ċ
HI
Ę
СB
<u>д</u>
d
<u>j</u> o
á
L
2
Ĩ0
ТИ
d
Ĕ
B
К
튭
a
1K
111
Mã
ē
1C
CI
q
ž
4
1
В
7S
4
1 1
1 L
Š
ė.
К
Ι.
(a
ИП
5
aG
r .

Т _{DM} , МЛН Лет	736	I	I	1060	I	I	I	I	I	1367	I	I	1721	I	I	894	I	I	996	1401	зовое Терит, анка,	UMI.
$\varepsilon_{Nd}(t)$	7.1	7.1	7.2	6.7	6.8	6.8	6.8	6.7	6.6	6.3	6.4	6.5	7.0	7.1	7.2	6.6	6.8	6.7	6.4	6.8	иокла ийдол я обм	nur,
E _{Nd} (0)	5.2	1.5	5.9	6.0	3.2	6.9	7.9	3.4	7.9	5.9	1.0	7.6	7.2	5.7	7.9	5.2	4.8	7.8	5.1	6.7	-IIJIAIT a30Bbl oroba	ר, ר
±2σ	0.000009	0.000012	0.000009	0.000011	0.000010	0.000012	0.000010	0.000012	0.000010	0.000011	0.000012	0.000009	0.000009	0.000011	0.000010	0.000009	0.000011	0.000009	0.000010	0.000011	е амфибол -плагиокл 13, Hbl – р	amerpus u
$^{143}\overline{\mathrm{Nd}}$ $^{144}\mathrm{Nd}$	0.512901	0.512712	0.512941	0.512943	0.512799	0.512989	0.513039	0.512808	0.513041	0.512939	0.512688	0.513026	0.513005	0.512926	0.513043	0.512903	0.512881	0.513038	0.512898	0.512978	зернистое пироксен плагиокла	1. 2) И Шађ
$f_{ m Sm/Nd}$	-0.178	I		-0.067		I	0.097		I	-0.035	Ι	I	0.020	I	Ι	-0.130	I	I	-0.120	-0.010	средне poвый i. Pl –	12151
±2σ	.0008	0.0005	6000.0	.0000.0	0.0007	0.0010	0.0011	0.0007	0.0011	. 0000.	0.0005	0.0011	0.0010	6000.0	0.0011	. 0000.0	0.0008	0.0011	6000.	0.0010	итовое порфи ритовая	03pacit
147 Sm 147 Nd	0.1617 0	0.0941 0	0.1749 0	0.1836	0.1306	0.1979 0	0.2158 0	0.1355 0	0.2201 0	0.1899 (0.0968 0	0.2178 0	0.2006 0	0.1700	0.2110 0	0.1712	0.1598 0	0.2176 0	0.1736 (0.1947 (3 – такс т; А-2 – ктура ос	1.4.114N1A
$_{ m I/T}^{ m Nd,}$	12.00	1.94	22.90	14.20	4.19	16.80	9.49	3.23	13.60	11.10	8.871	14.80	10.80	4.67	12.41	11.00	4.60	30.00	10.40	6.80	е; Р-5-; цолери т, струл	NET 20
$\mathop{\rm Sm}_{\Gamma/T}$	3.220	0.302	6.620	4.310	0.905	5.510	3.390	0.725	4.940	3.480	1.421	5.320	3.580	1.310	4.330	3.110	1.220	10.80	2.990	2.190	осчато зовый цолери	зующи.
$\boldsymbol{\epsilon}_{Sr}(t)$	-2.8	-1.4	-3.0	-18.5	-16.0	-27.1	-19.9	-19.8	I	-16.7	I	I	-14.4	I	I	-15.1	I	I	I	I	бо пол гиокла: истый	TBCICII 144N1A
$\varepsilon_{Sr}(0)$	-7.61	-7.11	16.10	-18.4	-18.6	23.70	-24.60	-25.20	I	-21.50	I	I	-19.30	I	I	-21.80	I	I	I	I	бро, сла сен-плал (незерни	10M CUU
±2σ	0.000030	0.000034	0.000048	0.000028	0.000035	0.000049	0.000036	0.000041	I	0.000039	I	I	0.000041	I	I	0.000042	I	I	I	I	зовое габ(ый пирокс 34 – сред	1Hbl C Y4C
⁸⁷ Sr/ ⁸⁶ Sr	0.703964	0.703999	0.705631	0.703202	0.703192	0.706169	0.702767	0.702724	I	0.702987	I	I	0.703137	I	I	0.702961	I	I	I	I	пагиокла горфирові товая; А-	г рассчита 144мы –
fRb/Sr	-0.66			0.01	I	I	-0.65	I	I	-0.68	I	I	-0.70	I	I	-0.95	I	I	I	I	ибол-п 1-2 – п ра офи	(U), I DM 143NIA/
±2σ	0.00022	0.00014	0.00240	0.00067	0.00042	0.00540	0.00023	0.00016	I	0.00021	I	I	0.00020	I	I	0.00004	I	I	I	I	ного) амф -5-9, Р-1 ; структу	5Nd(U), 2Nd
⁸⁷ Rb/ ⁸⁶ Sr	0.02781	0.01702	0.30120	0.08369	0.05230	0.67250	0.02857	0.01956	Ι	0.02649	I	I	0.02463	I	I	0.00440	I	I	I	I	тматоидн ит (?); Н долерит	b, ISm/Nd, 8 [44NLd]
Sr, l/T	444.0	809.0	81.5	235.0	536.0	23.9	280.0	463.0	I	232.0	I	I	244.0	I	I	269.0	I	I	I	I	(до пе) ро-нор истый), ^{ISm/Nd} 147 C m/
Rb, r/T	4.29	4.79	8.64	6.85	9.75	5.59	2.78	3.15	I	2.13	I	I	2.09	I	I	0.409	I	I	I	I	нистое ый габб ікозерн	UJ, ESr(I
Поро- да (мине- рал)	Габбро	PI	Hbl	Γa66po	Pl	Hbl	Γa66po	Pl	Hbl	Долерит	Pl	Hbl	Долерит	Pl	Hbl	Долерит	Pl	Cpx	Долерит	Долерит	срупнозерн незернисть А-10 – мел	JRb/Sr Esrl
Координаты	56°41'42" с.ш.	59°59′10″ в.д.		56°42'05" c.m.	59°56'14" в.д.		56°40'32" c.m.	60°04'57" в.д.		56°42'05" c.m.	59°56′14″ в.д.		56°40'32" c.m.	60°04'57" в.д.		56°28'25" c.m.	60°05'04" в.д.		56°28'30" с.ш. 60°05'01" в.д.	56°28'32" с.ш. 60°05'25" в.д.	ания. Р-1-1 – ^в Р-11-3 – средн ра офитовая; А	инопироксен. – о оост 876
Oбp.	P-1-1			P-5-3			P-11-3			P-5-9			P-11-2			A-2			A-10	A-34	Примеча габбро; структуј	Cpx - M.

РОНКИН, СЕМЕНОВ

ЕЖЕГОДНИК-2016, Тр. ИГГ УрО РАН, вып. 164, 2017

Рис. 2. Эволюционные диаграммы Rb-Sr (а) и ¹⁴⁷Sm-¹⁴³Nd (б) для долеритов и габбро Ревдинского фрагмента дайкового комплекса (Средний Урал).

a – размеры фигуративных точек произвольны, б – размеры прямоугольников соответствуют погрешностям ±2 σ . Сплошные линии – reference line.

натные привязки, Rb-Sr и ¹⁴⁷Sm-¹⁴³Nd систематика приведены в табл. 1.

Определение концентраций и изотопного состава Rb-Sr и ¹⁴⁷Sm-¹⁴³Nd систем выполняли масс-спектрометрическим методом изотопного разбавления (ID-TIMS) с помощью мультиколлекторного массспектрометра Finnigan MAT-262 после соответствующего кислотного разложения и использования смешанных индикаторов ⁸⁵Rb-⁸⁴Sr и ¹⁴⁹Sm-¹⁵⁰Nd. Вычисляли и оценивали параметры эволюционных диаграмм с помощью программы Isoplot/Ex [Ludwig, 2008]. Результаты изучения Rb-Sr и ¹⁴⁷Sm-¹⁴³Nd систематики для габбро и долеритов из Ревдинского фрагмента дайкового комплекса (Средний Урал) приведены в табл. 1 и на рис. 2–4.

Вариации концентраций Rb-Sr в габбро и долеритах определяются интервалами 2.78-6.85, 0.409-2.130 г/т и 235-444, 232-269 г/т соответственно, тогда как диапазоны наблюдаемых отношений ⁸⁷Rb/⁸⁶Sr, ⁸⁷Sr/⁸⁶Sr идентифицируются величинами 0.02781-0.8369. 0.004402-0.02649 и относительно низкими значениями 0.702767-0.703964 и 0.702961-0.703137 (или -24.6...-7.6, -21.8...-19.3 в единицах ε_{Sr}) соответственно, а параметр обогащения $f_{\rm Rb/Sr}$ ранжируется диапазоном -0.66...+0.012, -0.95...-0.68 (см. табл. 1). В целом вариации отношений Rb/Sr, ⁸⁷Sr/⁸⁶Sr в изученных разностях весьма ограниченны, за исключением габбро Р-1-1 и P-5-3, для которых фигуративные точки роговой обманки из этих пород имеют более или менее значимый "размах" по осям ординат и абсцисс графика, представленного на рис. 2а. Аппроксимация Rb-Sr систематики для габбро Р-1-1 и Р-5-3 на графике ⁸⁷Rb/⁸⁶Sr-⁸⁷Sr/⁸⁶Sr выявляет эррохронные (СКВО 19, 41) зависимости, определяющие датировки 415 и 345 млн лет, при $({}^{87}\text{Sr}/{}^{86}\text{Sr})_0 0.70385 \pm 0.00068$ и 0.7029 ± 0.0010 соответственно. Для образцов пород в целом (габбро и долеритов) коррелятивная связь на графиках в указанных координатах менее очевидна. В частности, для трех образцов габбро СКВО = 2634.

Коэффициенты вариации параметров ¹⁴⁷Sm-¹⁴³Nd систематики для габбро и долеритов (см. табл. 1) имеют значительно меньший по сравнению с Rb-Sr данными размах: 16.1 и 7.3%, 19.8 и 1.2%, 14.5 и 7.9%, 0.014 и 0.010% для содержания Sm, Nd, атомных отношений ¹⁴⁷Sm/¹⁴⁴Nd, ¹⁴³Nd/¹⁴⁴Nd соответственно. На графиках в координатах ¹⁴⁷Sm/¹⁴⁴Nd-¹⁴³Nd/¹⁴⁴Nd изученные разности демонстрируют изохронные зависимости (СКВО \leq 1.9), отвечающие моделям I [McIntyre et al., 1966]. Следует отметить высокие значения $\epsilon_{Nd}(t)$ – от +6.4 до +7.1 (см. табл. 2). Существенные погрешности определения возраста (до ±54 млн лет) спровоцированы минимальным количеством фигуративных точек (n = 3), а также относительно небольшой "растяжкой" атомных отношений ¹⁴⁷Sm/¹⁴⁴Nd, ¹⁴³Nd/¹⁴⁴Nd. Данная зависимость подтверждается наличием корреляционной связи (коэффициент корреляции -0.697) на графике в координатах $\Delta - \delta$, rge $\Delta = {}^{147}\text{Sm}/{}^{144}\text{Nd}_{max} - {}^{147}\text{Sm}/{}^{144}\text{Nd}_{min}$; max, min – максимальное (роговая обманка, клинопироксен) и минимальное (плагиоклаз) значения ¹⁴⁷Sm/¹⁴⁴Nd для каждого образца соответственно (см. табл. 1); δ – погрешность определения ¹⁴⁷Sm-¹⁴³Nd возраста (уровень значимости ±95%).

Модельные ¹⁴³Nd значения возрастов (T_{DM}), вычисленные путем нахождения координат точек пе-

Рис. 3. "Одностадийная" (DM: ¹⁴⁷Sm/¹⁴⁴Nd = 0.2135, ¹⁴³Nd/¹⁴⁴Nd = 0.513151) эволюция ¹⁴⁷Sm-¹⁴³Nd изотопной системы долеритов (штриховая линия) и габбро (сплошная) ревдинского фрагмента дайкового комплекса (Средний Урал).

ресечения Sm-Nd трендов эволюции по одностадийной модели [Jacobsen, Wasserburg, 1980] конкретных образцов с линией развития деплетированного вещества верхней мантии DM (см. рис. 3) характеризуются интервалами 736–1060 и 894–1721 млн лет для габбро и долеритов соответ-

Рис. 4. Диаграмма $\varepsilon_{sr}(t) - \varepsilon_{Nd}(t)$ для долеритов и габбро ревдинского фрагмента дайкового комплекса (Средний Урал).

t = 427 млн лет. MORB – mid-ocean ridge *basalt* [DePaolo, Wasserburg, 1977].

ственно, за исключением габбро P-11-3, у которого $^{147}Sm/^{144}Nd > ^{147}Sm/^{144}Nd_{\rm DM}$ (см. табл. 1).

На графике в координатах $\varepsilon_{Sr}(t) - \varepsilon_{Nd}(t)$ фигуративные точки изученных габбро (диапазоны -19.90...-2.83 и +6.7...+7.1) и долеритов (-19.7...-14.4 и +6.3...+7.0) локализуются во II квадранте (см. рис. 4).

Полученные ¹⁴⁷Sm-¹⁴³Nd датировки (см. рис. 2, табл. 2) демонстрируют определенное совпадение (в пределах наблюдаемых погрешностей) хронометрических возрастов долеритов дайкового комплекса (426 ± 54 , 426 ± 34 , 424 ± 19 млн лет) и габбро как самого РГГМ (431 ± 27 млн лет), так и из скринов между даек в дайковом комплексе $(427 \pm 32, 429 \pm 26$ млн лет). При этом, как отмечалось ранее, долеритовые дайки повсюду рассекают габбро. Кроме того, полевые наблюдения свидетельствуют о том, что перед внедрением долеритовых даек габбровый массив был деформирован и разбит на блоки, поскольку субпараллельные дайки секут разнозернистые габбро (от мелко- до пегматоидных), а их полосчатость в блоках имеет самые разнообразные элементы залегания. Аналогичную картину близости возрастов долеритов и габбро (а также пироксенитов, вебстеритов, дунитов и гарцбургитов) выявили исследователи при ¹⁴⁷Sm-¹⁴³Nd датировании пород Кемпирсайского [Edwards, Wasserburg, 1985] и Войкарского [Sharma et al., 1995] офиолитовых комплексов, отмечая, что при анализе эволюционной диаграм-

ЕЖЕГОДНИК-2016, Тр. ИГГ УрО РАН, вып. 164, 2017

мы ¹⁴⁷Sm/¹⁴⁴Nd–¹⁴³Nd/¹⁴⁴Nd, даже если фигуративные точки даек долеритов и плутонитов (от габбро до гарцбургитов) удовлетворяют одной линии регрессии, возможны как минимум два варианта интерпретации: 1) параллельные дайки суть магматические продукты парциального плавления, которое продуцировало деплетированные гарцбургиты; 2) гарцбургиты и дайковые комплексы генетически не связаны.

В нашем случае первый вариант интерпретации, по всей видимости, менее предпочтителен, поскольку по всем петрогеохимическим параметрам изученные долериты и габбро значимо различаются [Семенов, 2000]. В этом же контексте следует отметить существенную разницу в значениях модельных ¹⁴³Nd датировок (см. табл. 1, рис. 3). Кроме того, габбро Ревдинского массива являются составной частью ППУ (дунит-клинопироксенит-габбровой ассоциации Урало-Аляскинского типа), по геодинамическому режиму образования не сопоставимого с альпинотипной (дунит-гарцбургитовой) ассоциацией. Представляется, что в последнем варианте толкования кроется ответ на вопрос о причинах близости возрастов, полученных ¹⁴⁷Sm-¹⁴³Nd методом для долеритов и габбро в Ревдинском сегменте палеоспрединговой структуры Урала.

К подобным выводам пришли и исследователи [Силантьев и др., 2000], изучавшие возраст магматических и метаморфических событий в бортах рифтовой долины Срединно-Атлантического хребта на 15°20' с. ш. По их данным, определенные цифры K-Ar возраста гнейсевидного габбро станции FR16 отражают время магматического взаимодействия этой породы с поздними относительно времени формирования габброидного комплекса инъекциями трондьемитового расплава. Таким образом, можно предположить, что при образовании комплекса параллельных долеритовых даек значительные объемы высокотемпературного базальтового расплава вместе с горячим агрессивным флюидным потоком должны были пройти по многочисленным трещинам растяжения через габбро-гипербазитовый субстрат, модельный ¹⁴³Nd возраст которого в нашем случае оценивается как минимум в 1060 млн лет [Arndt, Goldstein, 1987] (см. табл. 1, рис. 3), гомогенизируя изотопный состав ¹⁴⁷Sm-¹⁴³Nd габбро. Поэтому полученные ¹⁴⁷Sm-¹⁴³Nd геохронометрические датировки соответствуют, вероятно, не возрасту образования габбро, а времени возникновения комплекса параллельных долеритовых даек. Возможно, именно по этой причине в Кемпирсайском и Войкаро-Сыньинском офиолитовых комплексах фигуративные точки долеритовых даек и пород габброгипербазитового ряда удовлетворяют соответствующим линиям регрессии [Edwards, Wasserburg, 1985; Sharma et al., 1995] на графиках в координа-Tax ¹⁴⁷Sm/¹⁴⁴Nd-¹⁴³Nd/¹⁴⁴Nd.

ЕЖЕГОДНИК-2016, Тр. ИГГ УрО РАН, вып. 164, 2017

Генетические следствия очевидны из рассмотрения зависимости $\varepsilon_{Sr}(t) - \varepsilon_{Nd}(t)$ (см. рис. 4), на котором фигуративные точки долеритов ревдинского и дегтярского фрагментов дайкового комплекса обнаруживают явное сходство с базальтами срединно-океанических хребтов [DePaolo, Wasserburg, 1977; McCulloch et al., 1981]. Менее определенны выводы для габбро самого РГГМ, поскольку положение $\varepsilon_{sr}(t) - \varepsilon_{Nd}(t)$ данных для этого образца значимо левее относительно тренда MORB (см. рис. 4). Причины более высокой величины $\varepsilon_{sr}(t)$ в габбро Ревдинского массива (-2.9) по сравнению с таковой в габбро из скринов дайкового комплекса (-18.5...-19.9) недостаточно ясны. Вероятно, этот факт объясняется той же самой причиной (см. ранее), которая привела к близким ¹⁴⁷Sm-¹⁴³Nd возрастам долеритов и габбро (см. табл. 1, рис. 3) в Ревдинском сегменте палеоспрединговой структуры Урала. С этой концепцией согласуются и Rb-Sr данные для габбро P-1-1, удовлетворяющие reference line с возрастом 415 млн лет (см. рис. 2а).

Таким образом, представленная Rb-Sr и ¹⁴⁷Sm-¹⁴³Nd систематика накладывает соответствующие ограничения как на время формирования комплекса параллельных долеритовых даек и габбро, так и на генезис изученных разностей из фрагментов офиолитовой ассоциации Среднего Урала.

СПИСОК ЛИТЕРАТУРЫ

- Геологическая карта Урала масштаба 1 : 500 000 / под ред. И.Д. Соболева, 1983.
- Иванов К.С., Берзин С.В. Первые данные о U-Pb возрасте цирконов из долеритовреликтовой зоны задугового спрединга горы Азов (Средний Урал) // Литосфера. 2013. № 2. С. 92–104.
- Семенов И.В. Палеоокеанический спрединговый вулканизм Урала и реконструкция параметров Уральского палеозойского океана. Екатеринбург: УрО РАН, 2000. 362 с.
- Семенов И.В. Влияние мантийных плюмов на сегментарность, химический состав базальтов и плутонитов рифта Палеоуральского океана // Геология Урала и сопредельных территорий. Екатеринбург: ИГГ УрО РАН, 2007. С. 75–97.
- Пучков В.Н. Дайковые рои Урала и ассоциирующие с ними магматические комплексы // Геотектоника. 2012. № 1. С. 42–52.
- Силантьев С.А., Левский Л.К., Аракеляни М.Н., Лебедев В.А., Bougault H., Cannat M. Возраст магматических и метаморфических событий в САХ: интерпретация данных изотопного К-Аг датирования // Рос. журн. наук о Земле. 2000. Т. 2, № 3/4. С. 269–278.
- *Ahrens L.H.* Implications of the Rhodesia age pattern // Geochim. Cosmochim. Acta. 1955. V. 8. P. 1–15.
- Arndt N.T., Goldstein S.L. Use and abuse of crust-formation ages // Geology. 1987. V. 15. P. 893–898.
- *DePaolo D.J., Wasserburg G.J.* The sources of island arcs as indicated by Nd and Sr isotopic studies // Geophys. Res. Lett. 1977. V. 4, iss. 10. P. 465–468.

- Edwards R.L., Wasserburg G.J. The age and emplacement of obducted oceanic crust in the Urals from Sm-Nd and Rb-Sr systematics // Earth and Planetary Sci. Lett. 1985. V. 72. P. 389-404.
- Jacobsen S.B., Wasserburg G.J. Sm-Nd isotopic evolution of chondrites // Earth and Planetary Sci. Lett. 1980. V. 50. P. 139-155.
- Ludwig K.R. User's Manual for Isoplot/Ex, Version 3.66. A geochronological toolkit for Microsoft Excel, Berkeley Geochronology Center. Special Publication No. 4. 2008. 77 p.
- McCulloch M.T., Gregory R.T., Wasserburg G.J., Taylor H.P.

Jr. Sm-Nd, Rb-Sr, and ¹⁸O/¹⁶O isotopic systematics in an oceanic crustal section: evidence from the Samail ophiolite // J. Geophys. Res. 1981. V. 86. P. 2721-2735.

- McIntyre G.A., Brooks C., Compston W., Turek A. The statistical assessment of Rb-Sr isochrones // J. Geophys. Res. 1966. V. 71. P. 5459–5468. Wetherill G.W. Discordant Uranium-Lead Ages // Trans.
- Amer. Geophys. Union. 1956. V. 37. P. 320-326.
- Sharma M., Wasserburg G.J., Papanastassiou D.A., Quick J.E., Sharkov E.V., Laz'ko E.E. High 143Nd/144Nd in extremely depleted mantle rocks // Earth and Planetary Sci. Lett. 1995. V. 135. P. 101-114.