МИНЕРАЛОГИЯ

_

СОСТАВ АКЦЕССОРНОЙ ХРОМОВОЙ ШПИНЕЛИ ИЗ ПЕРМОТРИАСОВЫХ БАЗАЛЬТОВ ФУНДАМЕНТА ЗАПАДНО-СИБИРСКОЙ ПЛАТФОРМЫ

© 2017 г. С. В. Берзин, К. С. Иванов

Хромовая шпинель является широко распространенным акцессорным минералом в основных вулканитах. Этот минерал характеризуется широкими вариациями химического состава в зависимости от условий кристаллизации и состава сосуществующего расплава. В связи с этим хромовая шпинель служит индикатором условий образования базальтов, в том числе геодинамических обстановок их формирования [Barnes, 2000; Barnes, Roeder, 2001; Kamenetsky et al., 2001; Roeder, 1994; Roeder et al., 2001; и др.]. Задачи исследования – изучение составов акцессорных хромовых шпинелей из пермотриасовых базальтов фундамента Западно-Сибирской плиты и сопоставление их с литературными данными о составе хромовой шпинели в базальтах разных геодинамических обстановок.

Пермотриасовые трапповые базальты pacпространены на очень большой площади Сибирской плиты и в доюрском фундаменте Западно-Сибирского бассейна вплоть до Среднего Урала на западе, Тимано-Печерского региона, а также Карского и Баренцева морей на севере. В фундаменте Западно-Сибирского бассейна они преимущественно слагают рифты и грабены и широко присутствуют на поверхности фундамента в его центральной, западной, восточной и северных частях [Сурков и др., 1987; Добрецов, 1997; Иванов К.С. и др., 2002, 2003, 2016а, б; Добрецов и др., 2005; Иванов К.П. и др., 2006, 2007; Ivanov A.V., 2007; Иванов, Ерохин, 2014; Ivanov K.S. et al., 2016; и др.]. По сравнению с трапповыми базальтами Сибирской платформы пермотриасовые вулканиты фундамента Западной Сибири изучены существенно хуже в основном за счет отсутствия естественных обнажений. Исследованию их геохимии и отчасти минералого-петрографических характеристик посвящен ряд публикаций [Медведев и др., 2003; Батурина и др., 2005; Сараев и др., 2009; Берзин и др., 2016а, б; Иванов К.С. и др., 2016а, б; Пономарев и др., 2016; и др.]. В данной работе впервые приводятся сведения о составе акцессорной хромовой шпинели из пермотриасовых базальтов фундамента Западной Сибири.

В ходе данного исследования произведено микроскопическое и микрозондовое изучение нескольких десятков тонких полированных шлифов базальтов из фундамента Западной Сибири. Хромовая шпинель была найдена в четырех образцах: скв. Западно-Чистинная 501, 3428 и 3438 м, скв. Котыгъеганская 28, 3022 м, скв. Сыморьяхская 10640, 2045 м, и в одном образце пермотриасовых базальтов из обнажения на Среднем Урале в разрезе по р. Багаряк (обр. Багаряк-015). Скважина Западно-Чистинная 501 находится в центральной части XMAO в пределах Колтогорско-Уренгойского рифта. Образцы с глубин 3428 и 3438 м представлены массивными базальтами, сложенными микрокристами плагиоклаза, погруженными в палагонит, замещаемый вторичными минералами – пумпеллиитом и хлоритом. Скважина Котыгъеганская 28 расположена в восточной части ХМАО [Иванов К.С. и др., 2016б]. Образец с глубины 3022 м представлен зеленокаменноизмененным выветрелым базальтом. Скважина Сыморьяхская 10640 размещается в Шаимском районе Приуральской части Западной Сибири. Образец с глубины 2045 м сложен плагиоклазом, клинопироксеном и основным стеклом, по которому развиваются метаморфогенные минералы. Образец Багаряк-015 отобран из скального обнажения на правом берегу р. Багаряк на западной околице д. Зырянка. Здесь в пределах Восточно-Уральской зоны находится один из наиболее представительных уральских разрезов вулканитов верхней перми-нижнего триаса [Иванов К.П., 1974; Иванов К.С. и др., 2002; и др.]. Образец представлен порфировым миндалекаменным базальтом с мелкими порфировыми вкрапленниками плагиоклаза.

Хромовая шпинель в рассмотренных образцах выражена отдельными идиоморфными зернами размером 5–30 мкм, которые встречаются на границе минеральных индивидов, местами захвачены в процессе роста зернами плагиоклаза или погружены в палагонит (рис. 1). Изучение состава и съемку в отраженных электронах осуществляли на электронно-зондовом микроанализаторе Сатеса SX-100 в ИГГ УрО РАН, аналитик А.В. Михеева.

Составы изученных хромовых шпинелей приведены в табл. 1. Содержание Cr_2O_3 варьирует в широких пределах от 14.00 до 49.00 мас. %, отношение $Cr/(Cr + Al + Fe^{3+}) - 0.34-0.70$, $Fe^{2+}/(Fe^{2+} + Mg) - 0.50-0.99$ мас. %. Почти все анализы попадают в по-

Рис. 1. Зерна акцессорной хромовой шпинели в пермотриасовых базальтах Западной Сибири. Образец из скважины Западно-Чистинная 501, 3438 м. Фотографии в отраженных электронах. Pl – плагиоклаз, Cal – кальцит, Chl – хлорит, Crsp – хромовая хпинель.

Точка	SiO ₂	TiO ₂	Al ₂ O ₃	Cr ₂ O ₃	V_2O_3	FeO*	MnO	MgO	ZnO	Сумма
Западно-Чистинная 501/3428 м										
35	0.13	3.25	8.25	30.13	1.09	48.79	0.43	3.53	0.00	95.83
37	0.20	0.00	0.54	31.49	0.20	57.36	1.71	0.93	1.35	93.90
38	0.11	7.74	3.98	24.42	0.90	52.86	0.30	0.11	2.67	93.08
Западно-Чистинная 501/3438 м										
50	1.03	2.82	12.71	38.06	0.74	36.70	0.27	4.87	0.00	97.34
51	0.00	2.81	10.16	38.89	0.92	40.74	0.00	3.29	0.27	97.31
52	0.45	4.13	8.23	34.75	1.16	44.21	0.38	2.33	0.36	96.02
53	0.00	4.24	8.92	37.87	1.05	39.28	0.30	5.19	0.00	96.96
54	0.18	3.15	11.54	39.91	1.02	33.93	0.27	6.88	0.00	97.05
55	0.15	18.03	4.91	13.52	1.47	45.03	0.00	0.02	13.42	96.63
56	0.00	14.83	3.75	26.73	1.99	39.26	0.29	0.05	9.77	96.66
Котыгъеганская 28/3022 м										
21	0.00	0.69	26.61	34.83	0.24	25.34	0.00	10.75	0.00	98.93
22	0.00	0.64	26.44	34.90	0.25	25.14	0.00	10.88	0.00	98.72
23	0.00	0.67	26.14	35.76	0.26	25.44	0.00	10.71	0.00	99.50
24	0.00	0.71	25.83	35.13	0.27	26.18	0.00	10.83	0.00	99.46
25	0.00	0.62	25.82	36.46	0.26	25.13	0.00	10.51	0.00	99.33
26	0.00	0.57	25.36	34.17	0.35	27.88	0.00	9.91	0.00	98.90
34	0.00	0.62	19.94	32.00	0.67	37.66	0.00	6.19	0.00	97.81
Сыморьяхская 10640/2045 м										
56	0.00	2.49	8.87	29.46	_	51.66	0.26	1.96	-	94.74
Обр. Багаряк-015										
28	0.56	0.45	13.01	48.50	0.14	24.46	0.28	6.66	0.94	95.14
29	0.00	0.41	13.19	47.47	0.14	26.64	0.22	5.30	0.38	93.95

Таблица 1. Состав хромовой шпинели из пермотриасовых базальтов фундамента Западно-Сибирской платформы, мас. %

*Сумма двух- и трехвалентного железа в пересчете на двухвалентное.

ле составов хромита, анализы из образца Котыгъеганская 28/3022 м попадают на границу полей составов хромита и герцинита, некоторые анализы из образца Западно-Чистинная 501/3428 м ложатся на границу полей составов хромита и магнетита. В проанализированных хромовых шпинелях

ЕЖЕГОДНИК-2016, Тр. ИГГ УрО РАН, вып. 164, 2017

Рис. 2. Положение точек составов хромовой шпинели из пермотриасовых базальтов Западной Сибири на диаграммах с полями составов для шпинели.

а–в – из вулканитов разных геодинамических обстановок [Barnes, 2000; Barnes, Roeder, 2001]; г – из вулканитов разных геодинамических обстановок, а также перидотитов зон СОХ и надсубдукционных перидотитов [Kamenetsky et al., 2001].

1 – скв. Западно-Чистинная 501, 3428 м; 2 – скв. Западно-Чистинная 501, 3438 м; 3 – скв. Котыгъеганская 28, 3022 м; 4 – скв. Сыморьяхская 10640, 2045 м; 5 – обр. Багаряк-015.

отмечена примесь $V_2O_3 - 0.14 - 1.5\%$. В двух анализах в образце Западно-Чистинная 501/3438 м (ан. 55.56) наблюдается значительная примесь ZnO (до 9.8–13.4%) и TiO₂ (15.0–18.0%), что в целом достаточно нехарактерно для хромовой шпинели из базальтов.

На диаграммах показаны результаты сопоставления полученных результатов с данными о составе хромовых шпинелей из базальтов разных гео-

ЕЖЕГОДНИК-2016, Тр. ИГГ УрО РАН, вып. 164, 2017

динамических обстановок (рис. 2). На трехкомпонентной диаграмме Al–Cr–Fe³⁺ (см. рис. 2в) и диаграммах Cr/(Cr + Al)–Fe²⁺/(Fe²⁺ + Mg) (см. рис. 2а) и Fe³⁺/(Fe³⁺ + Cr + Al)–Fe²⁺/(Fe²⁺ + Mg) (см. рис. 2б) [Barnes, 2000; Barnes, Roeder, 2001] поля составов хромовой шпинели из базальтов океанических островов и континентальных трапповых провинций частично перекрываются полями составов базальтов COX и островных дуг, однако в целом отличаются от них явно выраженным трендом увеличения содержания в минерале двух- и трехвалентного железа. Интерпретацию данных немного затрудняет то, что подобный тренд на "ожелезнение" характерен и для метаморфически преобразованных хромовых шпинелей [Barnes, Roeder, 2001]. Стоит отметить, что в выборку анализов хромшпинелей из базальтов трапповых провинций авторами включены и данные по Сибирской трапповой провинции из классических разрезов вблизи Норильска [Barnes, 2000].

Изученные нами хромовые шпинели на всех трех диаграммах попадают как в область перекрытия всех четырех показанных полей составов (например, на трехкомпонентной диаграмме, см. рис. 2г), так и в области, характерные только для шпинелей из базальтов трапповых провинций (см. рис 2а–в). Последнее достаточно наглядно видно на диаграмме $Fe^{3+}/(Fe^{3+} + Cr + Al)-Fe^{2+}/(Fe^{2+} + Mg)$ (см. рис. 2б), где фигуративные точки анализов образуют единый линейный тренд, близкий к области составов хромшпинелей из базальтов трапповых провинций, но при этом слегка отклоняющийся в сторону повышенного содержания Fe^{2+} . Последнее может быть связано с зеленокаменным изменением вмещающих пород.

На диаграмме TiO₂-Al₂O₃ (см. рис. 2г) [с полями составов по: Kamenetsky et al., 2001] хромовые шпинели из образцов Западно-Чистинная 501/3428 м, Западно-Чистинная 501/3438 м и CbI10640/2045 тяготеют к полю составов базальтов трапповых провинций и частично попадают в поле базальтов океанических островов. Хромовые шпинели из проб Котыгъеганская 28/3022 и Багаряк-015 на данной диаграмме попадают в поля составов базальтов зон COX и задугового спрединга, частично перекрывающиеся полем островодужных базальтов.

Таким образом, мы получили первые данные о составе хромовой шпинели из пермотриасовых базальтов фундамента Западной Сибири и Восточной зоны Среднего Урала. При сопоставлении с имеющейся информацией о составах хромовой шпинели из базальтов разных геодинамических обстановок показано, что составы изученных хромшпинелей попадают в поля составов базальтов трапповых провинций и океанических островов, а также частично в поля составов океанических и островодужных базальтов. Эти сведения согласуются с данными о геохимической близости пермотриасовых базальтов Урала и Сибири не только к базальтам трапповых провинций, но и к островодужным вулканитам, что впервые отметил К.П. Иванов, а позднее и многие другие авторы [Берзин и др., 2016а, б; Иванов К.П., 1974; Иванов К.П. и др., 2006, 2007; Иванов К.С. и др., 2002; и др.]. Этот факт вполне можно объяснить контаминацией внедрявшейся базальтовой магмой палеозойских островодужных комплексов, широко распространенных в доюрском фундаменте Западной Сибири. В целом очевидно, что изучение типохимических особенностей хромовых шпинелей в базальтах дает не всегда однозначные результаты для последующих геодинамических реконструкций. Однако такие исследования могут быть валидными в совокупности с другими геохимическими и изотопно-геохимическими данными.

Авторы благодарны А.В. Михеевой за осуществление микрозондовых анализов.

Исследования проведены при поддержке Российского научного фонда, проект № 16-17-10201.

СПИСОК ЛИТЕРАТУРЫ

- Батурина Т.П., Сараев С.В., Травин А.В. Каменноугольные и пермотриасовые вулканиты в зоне сочленения Урала и Западной Сибири // Геология и геофизика. 2005. Т. 46, № 5. С. 504–516.
- Берзин С.В., Иванов К.С., Зайцева М.В. Пермотриасовые базальты фундамента Западно-Сибирского бассейна, вскрытые сверхглубокой скважиной Ен-Яхинская СГ-7 // Литосфера. 2016а. № 6. С. 117–128.
- Берзин С.В., Иванов К.С., Бочкарев В.С., Зайцева М.В. Изотопия (Pb, He, Sr, Nd), минералогия и геохимия пермотриасовых базальтов Западно-Сибирского мегабассейна, вскрытых сверхглубокой скважиной Ен-Яхинская СГ-7 // Горные ведомости. 2016б. № 3-4 (142–143). С. 28–43.
- Добрецов Н.Л. Пермотриасовый магматизм и осадконакопление в Евразии как отражение суперплюма // Докл. АН. 1997. Т. 354, № 2. С. 220–223.
- Добрецов Н.Л., Владимиров А.Г., Крук Н.Н. Пермскотриасовый магматизм Алтае-Саянской складчатой области как отражение Сибирского суперплюма // Докл. АН. 2005. Т. 400, № 4. С. 505–509.
- Иванов К.П. Триасовая трапповая формация Урала. М.: Наука, 1974. 154 с.
- Иванов К.П., Иванов К.С., Федоров Ю.Н. Геохимия триасовых вулканитов Западно-Сибирской плиты (на примере туринской серии) // Геодинамика, магматизм, метаморфизм и рудообразование. Екатеринбург: ИГГ УрО РАН, 2007. С. 766–790.
- Иванов К.П., Иванов К.С., Коротеев В.А., Лепихина О.П., Ронкин Ю.Л. Распределение микроэлементов в породах дифференцированной серии (на примере Тюменского силла) // Литосфера. 2006. № 4. С. 57–67.
- Иванов К.С., Ерохин Ю.В. Палеогеодинамика формирования системы триасовых грабенов Западной Сибири // Докл. АН. 2014. Т. 458, № 4. С. 442–445.
- Иванов К.С., Ерохин Ю.В., Смирнов В.Н., Слободчиков Е.А. Рифтогенез на Среднем Урале (комплексы и структуры растяжения в истории развития Среднего Урала). Екатеринбург: ИГГ УрО РАН, 2002. 91 с.
- Иванов К.С., Федоров Ю.Н., Ерохин Ю.В., Пономарев В.С. Геологическое строение фундамента Приуральской части Западно-Сибирского нефтегазоносного мегабассейна. Екатеринбург: ИГГ УрО РАН, 2016а. 302 с.
- Иванов К.С., Писецкий В.Б., Ерохин Ю.В., Хиллер В.В., Погромская О.Э. Геодинамическое строение и флюи-

ЕЖЕГОДНИК-2016, Тр. ИГГ УрО РАН, вып. 164, 2017

додинамика фундамента Западной Сибири (на востоке XMAO). Екатеринбург: ИГГ УрО РАН, 2016б. 242 с.

- Иванов К.С., Федоров Ю.Н., Коротеев В.А., Печеркин М.Ф., Кормильцев В.В., Погромская О.Э., Ронкин Ю.Л., Ерохин Ю.В. Строение и природа области сочленения Урала и Западной Сибири // Докл. АН. 2003. Т. 393, № 5. С. 647–651.
- Медведев А.Я., Альмухамедов А.И., Кирда Н.П. Геохимия пермотриасовых вулканитов Западной Сибири // Геология и геофизика. 2003. Т. 44, № 1–2. С. 86–100.
- Пономарев В.С., Ерохин Ю.В., Иванов К.С. Вещественный состав базальтов из доюрского основания Западной Сибири (Западно-Таркосалинская площадь, ЯНАО) // Вестн. Урал. отд. Рос. минералогического о-ва. Екатеринбург: ИГГ УрО РАН, 2016. С. 95–104.
- Сараев С.В., Батурина Т.П., Пономарчук В.А., Травин А.В. Пермотриасовые вулканиты Колтогорско-Уренгойского рифта Западно-Сибирской геосинеклизы // Геология и геофизика. 2009. Т. 50, № 1. С. 4–20.
- Сурков В.С., Жеро О.Г., Смирнов Л.В. Раннемезозойский рифтогенез и его влияние на структуру литосферы Западно-Сибирской плиты // Геология и геофизика. 1987. № 9. С. 3–11.

Barnes S.J. Spinels and Mg ilmenites from the Noril'sk 1

and Talnakh intrusions and other mafic rocks of the Siberian flood basalt province // Economic Geology. 2000. V. 95. P. 1701–1717.

- *Barnes S.J., Roeder P.L.* The range of spinel compositions in terrestrial mafic and ultramafic rocks // J. Petrology. 2001. V. 42. P. 2279–2302.
- Ivanov A.V. Evaluation of different models for the origin of the Siberian traps // Geol. Soc. Amer. 2007. Spec. Paper 430. P. 669–691.
- Ivanov K.S., Erokhin Yu.V., Ponomarev V.S., Pogromskaya O.E., Berzin S.V. Geological Structure of the Basement of Western and Eastern Parts of the West-Siberian Plain // Int. J. Environmental Sci. Ed. 2016. V. 11, no. 4. P. 6409–6432.
- Kamenetsky V.S., Crawford A.J., Meffre S. Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks // J. Petrology. 2001. V. 42. P. 655–671.
- Roeder P.L. Chromite: from the fiery rain of chondrules to the Kilauea Iki lava lake // Canad. Mineral. 1994. V. 32. P. 729–746.
- *Roeder P.L., Poustovetov A., Oskarsson N.* Growth forms and composition of chromian spinel in MORB magma: diffusion-controlled cristallization of chromian spinel // Canad. Mineral. 2001. V. 39. P. 397–416.