ГЕОХРОНОЛОГИЯ

IN SITU U-РЬ ИЗОТОПНАЯ СИСТЕМАТИКА МИНЕРАЛА ГРУППЫ ЭШИНИТА И СОСУЩЕСТВУЮЩЕГО С НИМ МОНАЦИТА

© 2017 г. Ю. Л. Ронкин, В. В. Мурзин, А. Гердес (A. Gerdes)*, Д. А. Варламов

Реконструкция особенностей формирования земной коры и литосферы является одной из приоритетных задач геологии, поскольку определяет понимание фундаментальных закономерностей развития нашей планеты. Среди многообразия подходов к установлению закономерностей эволюции геологических объектов все более важную роль в последние годы играют методы изотопной геологии, в частности изотопная термохронометрия, основанная на датировании минералов с разными температурами закрытия изотопных систем $(T_{\rm c})$. Под последней понимается температура, при которой скорость потерь радиогенных составляющих за счет диффузии становится несущественной в сравнении с динамикой их накопления [Dodson, 1973]. Иными словами, предполагается, что вблизи Т. продукты, возникающие при радиоактивном распаде, перманентно удаляются путем диффузии. По мере охлаждения изотопная система достигает диапазона переходных температур, при которых происходят и накопление, и потеря дочерних продуктов в исходном минерале. В дальнейшем при определенной температуре потери становятся ничтожно малы и дочерние составляющие в минерале накапливаются в соответствии с классическим законом радиоактивного распада.

Изучение поведения разных изотопных систем на минеральном уровне позволяет реконструировать параметры t-P-T (возраст-давление-температура) при эволюции того или иного геологического объекта. Например, температуры закрытия U-Pb изотопной системы для минералов, широко используемых в изотопной термохронометрии, значимо разнятся: T_c циркона составляет >900 °C [Lee et al., 1997], монацита – >750 [Spear, Parrish, 1996], ксенотима – >650 [Heaman, Parrish, 1991], ортита – 650, сфена – 600 [Cherniak, 1993; Heaman, Parrish, 1991], рутила – 400 °C [Mezger et al., 1989, 1991]. В этом смысле исследования, направленные на выявление T_c U-Pb изотопных систем новых минералов, и сравнение их с известными данными представляются актуальными.

В настоящей работе впервые (судя по соответствующему поиску опубликованной отечественной и зарубежной литературы) приведены результаты изучения in situ U-Pb изотопной систематики минерала, принадлежащего к ряду визуально трудно различимых образований танталониобатов, составляющих группу эшинита: эшинит-(Y), эшинит-(Ce), эшинит-(Nd) и др. Минеральные виды в группе эшинита выделяются по преобладающим элементам в первой и второй кристаллохимических позициях. В Ті-доминантных видах различаются эшинит-(Се), эшинит-(Ү) (ранее известный под названием "приорит") и эшинит-(Nd). Существуют также Nb-доминантные виды: ниобоэшинит-(Се), ниобоэшинит-(Y) и ниобоэшинит-(Nd). Кроме того, известны виды с преобладанием Са в первой позиции и различным заполнением второй: виджеццит $(Ca,TR...)(Nb,Ta)_2O_6$ и ринерсонит (Ca,TR...)(Ta,Nb)₂O₆. Редкоземельным аналогом последнего служит танталэшинит-(Ү). Между перечисленными видами в основном наблюдается совершенный изоморфизм. В нашем случае эшинит-(Y) отнесен к данному минеральному виду условно, поскольку его состав может отвечать и иттрокразиту-(Y) [Hidden, Warren, 1906] (табл. 1).

Кристаллы эшинита-(Ү) и сосуществующего с ним монацита были извлечены из золотоносных магнетит-хлорит-доломитовых пород Карабашского массива серпентинитов Южного Урала (N 55.27.41.02, Е 60.13.56.96) (рис. 1). Эшинитсодержащие породы сложены доломитом с подчиненным количеством хлорита (до 30%), магнетита и ильменита (до 10-15%); в них присутствуют также апатит, самородное золото, циркон и торианит [Мурзин и др., 2005; Murzin et al., 2017]. Эшинит образует кристаллы таблитчатого облика красноватокоричневого цвета размером до 1 мм. В некоторых кристаллах наблюдаются две генерации – ранняя слагает основную их часть, а поздняя, представленная неоднородными по составу мелкозернистыми агрегатами, частично замещает раннюю генерацию по сети микротрещин (рис. 2а). Значительно реже ранняя генерация кристаллов полностью замещается поздней (рис. 2б).

В любом случае индивиды ранней генерации эшинита обнаруживают тонкую и грубую ритмич-

^{*} Университет им. И.В. Гёте, г. Франкфурт-на-Майне, Германия.

РОНКИН и др.

Таблица 1. Химический состав эшинита-(Y) из золотоносных магнетит-хлорит-карбонатных пород Карабашского массива серпентинитов на Южном Урале, мас. %

№ кр./ № точки	CaO	TiO ₂	Nb ₂ O ₅	Y ₂ O ₃	La ₂ O ₃	Ce_2O_3	Pr ₂ O ₃	Nd ₂ O ₃	Sm ₂ O ₃	Gd ₂ O ₃	Dy ₂ O ₃	Er ₂ O ₃	Yb ₂ O ₃	PbO	ThO ₂	UO ₂	Сумма
Центральная часть кристаллов																	
1409/12	0.15	47.47	4.15	14.15	0.31	0.60	H/o	3.39	2.74	3.67	3.74	1.44	1.48	0.48	12.49	1.67	97.93
1409/8	0.12	47.71	3.88	14.89	H/o	0.38	0.17	4.08	2.60	4.34	3.50	2.98	1.68	0.67	12.42	1.57	100.99
1409/7	0.24	47.23	4.87	15.90	0.05	0.85	0.33	3.47	2.93	3.26	3.57	2.11	2.19	0.53	9.44	1.16	98.13
Краевая часть кристаллов																	
1409/15	0.34	42.30	6.57	10.22	H/o	0.79	H/o	3.71	2.44	3.14	2.82	1.11	0.01	0.64	22.41	1.54	98.04
1409/9	0.18	44.45	5.81	12.24	H/o	0.73	0.91	4.03	2.29	2.90	3.19	1.34	1.52	0.41	19.03	1.80	100.83
1409/10	0.13	43.87	4.96	9.52	0.28	1.85	0.42	4.01	1.77	2.80	2.91	1.43	0.88	0.63	24.34	2.29	102.09
Полифазные агрегаты																	
1409/17	0.35	43.53	5.19	8.73	1.38	1.50	H/o	4.27	2.56	2.85	2.20	2.51	0.00	0.91	22.20	3.01	101.19
1409/20	0.13	40.89	8.10	5.40	0.00	3.33	0.22	8.14	2.82	2.21	2.15	0.80	0.64	1.04	14.73	6.41	97.01
1421/13	0.07	46.01	7.05	14.99	0.37	0.36	H/o	2.68	2.64	3.88	3.85	3.30	0.60	0.39	5.27	7.03	98.49
1421/14	H/o	43.99	5.28	10.13	0.60	1.20	0.34	5.07	3.54	4.37	3.21	1.80	0.55	1.08	11.06	8.48	100.70
1421/23	0.28	46.13	3.41	9.64	0.60	3.16	0.32	6.13	2.48	2.97	2.87	1.28	1.21	0.60	15.41	4.00	100.49

Примечание. Химический состав минералов изучен в ИЭМ РАН, г. Черноголовка, на электронном сканирующем микроскопе Tescan VEGA-II XMU с энергодисперсионным спектрометром INCA Energy 450. Курсивом выделены определения со значениями концентрации элемента ниже среднеквадратичной погрешности анализа. № кр. – номер кристалла.

Рис. 1. Положение альпинотипных и дунит-клинопироксенит-габбровых массивов Урала (а) и схематическая геологическая карта Карабашского массива, составленная Г.Г. Кораблевым [Белогуб и др., 2003] (б).

1, 2 – массивы Платиноносного пояса: 1 – альпинотипные, 2 – мафит-ультрамафитовые; 3 – Главный Уральский разлом; 4 – Карабашский массив; 5 – кремнистые и кварц-серицитовые сланцы, метавулканиты, О₂; 6 – андезиты, базальты, сланцы кварц-серицитовые, D₂; 7 – серпентиниты Золотогорского массива и южное окончание серпентинитов горы Фоминой; 8 – родингитовые жилы; 9 – карбонат-хлоритовые жилы; 10 – рибекитовые породы; 11 – разломы; 12 – положение изученной пробы.

ЕЖЕГОДНИК-2016, Тр. ИГГ УрО РАН, вып. 164, 2017

Рис. 2. Зональный эшинит-(Y) ранней генерации (а) и замещение его полифазным мелкозернистым агрегатом эшинита поздней генерации (б).

ную зональности по химическому составу. Первая присуща центральным частям кристаллов и проявлена в вариациях концентраций **Th. Грубая зональ**ность выражена в резком обогащении краевых зон роста кристаллов Th и Nb и снижении содержаний Ti и Y. Для агрегатов эшинита поздней генерации характерна обогащенность Ce (до 3.3 мас. % Ce₂O₃) и, в еще большей степени, U (до 8.5 мас. % UO₂) (см. табл. 1).

Характерная черта химического состава эшинита из изученных метасоматитов – низкое содержание Nb (4–8 мас. %) и, соответственно, высокое – Ті (41–48 мас. %). По этому признаку исследованный нами минерал резко отличается от всех разновидностей эшинита из щелочных комплексов Урала, в которых содержание Ті не поднимается выше 30 мас. %, а концентрация Nb составляет более 20 мас. % [Типоморфизм..., 1989].

Сосуществующий монацит присутствует в виде кристаллов коричневато-желтого цвета размером до 1 мм, заключенных в карбонате и хлорите. Часто наблюдаются его срастания с магнетитом, апатитом и самородным золотом. В самом монаците зафиксированы включения магнетита, апатита и торианита. Состав монацита характеризуется высоким содержанием La (17.5–19.0 мас. %) и низким – U (<0.01 мас. %) и Th (0.27–0.43 мас. %). Более высокие содержания тория в монаците из изученных нами пород (0.72–3.42 мас. % ThO₂) приведены в работе В.В. Хиллер с соавторами [2016].

U-Pb LA-ICP-MS датирование эшинита и сосуществующего монацита выполнено с помощью секторного масс-спектрометра Thermo Scientific Elemenet2 ICP-MS, интегрированного с лазерной установкой New Wave Research UP-213 в Франкфуртском университете им. И.В. Гёте (Германия) по методике [Gerdes et al., 2013]. Результаты приведены в табл. 2 и на рис. 3.

На графике с конкордией в координатах ²⁰⁷Pb/²⁰⁶Pb-²³⁸U/ ²⁰⁶Pb (см. рис. 3а) U-Pb изотопная систематика эшинита характеризуется значительной (от 43.5 до 66.5%) дискордантностью. Тем не менее положение фигуративных точек аппроксимируется линией регрессии, нижнее пересечение которой с линией согласованных значений определяет возраст 298 ± 18 млн лет. Менее определенно, в силу локализации фигуративных точек вблизи нижнего пересечения дискордии с конкордией (что выражается в значительной величине погрешности ±460 млн лет), выявляется возраст 2462 млн лет, соответствующий верхнему пересечению (см. рис. За). Указанная ситуация с большой долей вероятности отвечает случаю эпизодической потери свинца, опровергая аргументы G.R. Tilton [1960] и G.J. Wasserburg [1963] о потере радиогенного свинца путем непрерывной диффузии.

В противовес U-Pb изотопной систематике эшинита U-Pb данные для четырех фигуративных точек сосуществующего монацита (см. табл. 2) на графике с конкордией в координатах $^{207}Pb/^{235}U-^{206}Pb/^{238}U$ (см. рис. 3б) выявляют практически конкордантный кластер, отвечающий U-Pb возрасту 317.3 ± 3.3 млн лет, CKBO = 1.2. Совпадение в пределах наблюдаемых погрешностей демонстрирует и Th-Pb система, фиксируя возраст монацита 308 ± 11 млн лет (см. врезку на рис. 3б).

В первом приближении полученные U-Pb LA-ICP-MS данные (см. табл. 2, рис. 3а) свидетельствуют о температурах закрытия U-Pb системы эшинита ниже таковой для сосуществующего монацита [Spear, Parrish, 1996], судя по сравнительной степени дискордантности изученных

Кратер/	²⁰⁷ Pb,	А	²⁰⁶ Pbc,	В	±2σ,	²⁰⁷ <u>Pb</u>	±2σ,	²⁰⁷ <u>Pb</u>	±2σ,	Rho	²⁰⁶ <u>Pb</u>	±2σ	C	±2σ	²⁰⁷ <u>Pb</u>	±2σ	D,
образец	имп/с		%		%	²³⁵ U	%	²⁰⁶ Pb	%		²³⁸ U				²⁰⁶ Pb		%
													млн ј	тет			
Эшинит																	
A09	7116	0.18	1.00	19.9720	1.9	0.4055	2.5	0.05873	1.7	0.74	315	6	346	7	557	37	43
A08	7036	0.16	0.50	20.0760	1.7	0.4121	2.4	0.06000	1.6	0.72	313	5	350	7	604	36	48
A07	9999	0.10	H/o	18.5490	1.8	0.4778	2.3	0.06429	1.5	0.78	338	6	397	8	751	31	55
A10	49652	0.34	31.70	17.5900	3.1	0.5643	4.6	0.07199	3.4	0.67	356	11	454	17	986	69	64
A06	11336	0.20	3.00	17.2740	1.6	0.6034	4.0	0.07559	3.7	0.40	363	6	479	15	1084	74	67
Монацит																	
A28	3881	0.0154 (2.1)	2.30	0.04997	2.5	0.3617	2.7	0.05249	1.1	0.92	314	8	308	6	307	24	-2
A29	2513	0.0158 (2.0)	2.30	0.05032	2.2	0.3651	2.4	0.05262	1.0	0.90	316	7	317	6	313	23	-1
A24	1628	0.0153 (2.1)	2.80	0.05072	2.1	0.3667	2.4	0.05243	1.0	0.90	319	7	307	7	304	23	-5
A30	2503	0.0150 (2.2)	2.60	0.05100	2.2	0.3715	2.4	0.05283	1.1	0.89	321	7	301	6	321	25	0
Стандарты																	
91500 (12)	5383	0.35	0.68	0.17910	2.1	1.8403	2.4	0.07452	0.8	0.51	1062	21	1060	15	1056	17	-1
Ples. (13)	8254	0.12	0.44	0.05379	1.4	0.3959	2.0	0.05337	2.4	0.66	338	5	339	6	345	54	2
BB (12)	6080	0.31	0.28	0.09280	1.9	0.7535	2.4	0.05892	1.1	0.60	572	10	570	10	564	23	-1
Steens (5)	302551	51.93	0.17	0.17250	1.4	1.7588	1.6	0.07396	1.1	0.93	1026	13	1030	10	1040	23	1
Mana (5)	117079	86.01	0.17	0.08990	0.7	0.7272	2.1	0.05870	1.4	0.92	555	4	555	9	556	30	0

Таблица 2. U-Pb LA ICP-MS данные для эшинита-(Y) из золотоносных магнетит-хлорит-карбонатных пород Карабашского массива серпентинитов на Южном Урале

Примечание. А – Th/U для эшинита и стандартов; ²⁰⁸Pb/²³²Th для монацита (в скобках погрешность $\pm 2\sigma$). В – ²³⁸U/²⁰⁶Pb для эшинита и ²⁰⁶Pb/²³⁸U для монацита и стандартов. С – возраст, вычисленный по отношениям ²⁰⁷Pb/²³⁵U – для эшинита и стандартов, ²⁰⁸Pb/²³²Th – для монацита. Размер кратера до 33 мкм при глубине ≈15 мкм. Концентрации U, Pb и отношение Th/U рассчитаны относительно стандарта циркона GJ–1. Отношения ²⁰⁷Pb/²³⁵U и ²⁰⁶Pb/²³⁸U скорректированы на бланк, фракционирование и общий свинец. Rho – коэффициент корреляции отношений ²⁰⁶Pb/²³⁸U и ²⁰⁷Pb/²³⁵U. D =100*[1 – (T_{206Pb/238}U)/(T_{207Pb/206Pb})] – степень конкордантности, где T – возраст, млн лет. 91500, Plesovice, BB, Steens, Mana – стандартные образцы, цифры в скобках соответствуют статистике для каждого стандарта. H/o – ниже порога обнаружения.

Рис. 3. График с конкордией для эшинита из золотоносных магнетит-хлорит-доломитовых пород Карабашского массива (а) и сосуществующего с ним монацита (б).

Погрешности фигуративных эллипсов ±25. Совпадающий в пределах наблюдаемых погрешностей Th-Pb возраст 308 ± 11 млн лет демонстрирует врезка.

минералов относительно линии согласованных значений.

Полученные нами данные наряду с опубликованными в настоящее время работами [Краснобаев, Вализер, 2016; Хиллер и др., 2016] вносят вклад и в решение проблемы генетической общности изученных пород с золотоносными родингитами Карабашского массива (см. рис. 1), имеющими Sm-Nd возраст 369.4 ± 8.8 млн лет [Мурзин и др., 2013]. Такая связь предполагалась ранее на основе при-

ЕЖЕГОДНИК-2016, Тр. ИГГ УрО РАН, вып. 164, 2017

уроченности этих пород к зонам тектонического меланжа сходной геохимической специализации, близких температурных условий формирования (от 480-430 до 260-210 °C) и изотопного состава минералов С, О, Sr [Мурзин, 2013]. Данные химического датирования изученных пород по монациту и торианиту (317 ± 3 млн лет [Хиллер и др., 2016]) совпадают с приведенными изотопными датировками и свидетельствуют о существенном временном разрыве между формированием родингитов и магнетит-хлорит-доломитовых метасоматитов Карабашского массива. Время возникновения первых (360-370 млн лет [Ронкин и др., 2015]) соответствует началу коллизионного этапа эволюции Уральского подвижного пояса, а вторых (300-320 млн лет) постколлизонного [Пучков, 2010].

Авторы признательны Ю.В. Ерохину за конструктивные замечания.

Исследования выполнены при финансовой поддержке РФФИ, проекты № 12-05-00734а и 16-05-00407а.

СПИСОК ЛИТЕРАТУРЫ

- Белогуб Е.В., Удачин В.Н., Кораблев Г.Г. Карабашский рудный район (Южный Урал). Материалы к путеводителю геолого-экологической экскурсии. Миасс: ИМин УрО РАН, 2003. 40 с.
- Краснобаев А.А., Вализер П.М. Возрастные и генетические взаимоотношения гипербазитов, родингитов и хлорит-карбонатных пород Карабашского массива (Южный Урал) // Литосфера. 2016. № 3. С. 112–125.
- Мурзин В.В. О возможном генетическом единстве золотоносных родингитов и карбонатитоподобных пород в Карабашском массиве гипербазитов на Ю. Урале // Рудообразующие процессы: от генетических концепций к прогнозу и открытию новых рудных провинций и месторождений. М.: ИГЕМ РАН, 2013. С. 149.
- Мурзин В.В., Варламов Д.А., Ронкин Ю.Л., Шанина С.М. Происхождение золотоносных родингитов Карабашского массива альпинотипных гипербазитов на Южном Урале // Геология рудных месторождений. 2013. Т. 55, № 4. С. 320–341.
- Мурзин В.В., Попов В.А., Ерохин Ю.В., Рахов Е.В. Минералого-геохимические особенности золото-редкометалльно-редкоземельной минерализации хлорит-карбонатных пород Карабашского массива гипербазитов (Южный Урал) // Уральский минералогический сборник № 13. Миасс: ИМин УрО РАН, 2005. С. 123–145.
- Пучков В.Н. Геология Урала и Приуралья (актуальные вопросы стратиграфии, тектоники, геодинамики и метал-

логении). Уфа: ДизайнПолиграфСервис, 2010. 280 с.

- Ронкин Ю.Л., Мурзин В.В., Гердес А. Возрастные рубежи формирования золотоносных хлорит-гранатпироксеновых (родингитов) и магнетит-хлориткарбонатных пород в Карабашском массиве гипербазитов на Южном Урале // Изотопное датирование геологических процессов: новые результаты, подходы и перспективы. СПб.: Sprinter, 2015. С. 228–229.
- Типоморфизм минералов: справочник / под ред. Л.В. Чернышевой. М.: Недра, 1989. 560 с.
- Хиллер В.В., Ерохин Ю.В., Иванов К.С. Th-U-Pb-возраст золотоносных карбонатитоподобных пород Карабашского гипербазитового массива (Южный Урал). Вестн. ВГУ. Сер.: геол. 2016. № 4. С. 44–49.
- *Cherniak D.J.* Lead diffusion in titanite and preliminary results on the effects of radiation damage on Pb transport // Chem. Geol. 1993. V. 110. P. 177–194.
- Dodson M.H. Closure temperature in cooling geochronological and petrological systems // Contrib. Mineral. Petrol. 1973. V. 40. P. 259–274.
- Gerdes A., Zeh A., Ronkin Yu.L. U-Pb and Lu-Hf dating of zircon from ore deposits by La ICP-MS // Колчеданные месторождения – геология, поиски, добыча и переработка руд. Екатеринбург: ИГГ УрО РАН, 2013. С. 192–195.
- Heaman L.M., Parrish R. U-Pb geochronology of accessory minerals // Applications of Radiogenic Isotope Systems to Problems in Geology: Min. Ass. Can. Short Course Handbook / ed. by L. Heaman, J.N. Ludden. Ottawa, 1991. P. 59–102.
- *Hidden W.E., Warren C.H.* Yttrocrasite, a New Yttrium-Thorium-Uranium Titanate // Am. J. Sci. 1906. V. 22. P. 515–519.
- Lee J.K.W, Williams I., Ellis D.J. Pb, U and Th diffusion in natural zircon // Nature. 1997. V. 390. P. 159–163.
- *Mezger K., Hanson G.N., Bohlen S.R.* High precision U-Pb ages of metamorphic rutile: applications to the cooling history of high-grade terranes // Earth Planet Sci. Lett. 1989. V. 96. P. 106–118.
- Mezger K., Rawnsley C., Bohlen S., Hanson G. U-Pb garnet, sphene, monazite, and rutile ages: implications for the duration of high-grade metamorphism and cooling histories Adirondack Mountains, New York // J. Geol. 1991. V. 99. P. 415–428.
- Murzin V.V., Varlamov D.A., Palyanova G.A. Conditions of formation of gold-bearing magnetite-chlorite-carbonate rocks of the Karabash ultrabasic massif (South Urals) // Russian Geol. Geophys. 2017. V. 58, no. 7. P. 803–814.
- Spear F., Parrish R.R. P-T-t evolution of the Valhalla Complex, British Columbia, Canada // J. Petrol. 1996. V. 37. P. 733–765.
- *Tilton G.R.* Volume Diffusion as a Mechanism for Discordant Lead Ages // J. Geophys. Res. 1960. V. 65. P. 2933–2945.
- Wasserburg G.J. Diffusion Processes in Lead-Uranium Systems // J. Geophys. Res. 1963. V. 68. P. 4823–4846.