К МЕТОДИКЕ ОПРЕДЕЛЕНИЯ U-Pb-BO3PACTA И АНАЛИЗА Lu-Hf-ИЗОТОПНОЙ СИСТЕМЫ ЦИРКОНА МЕТОДОМ ЛА-ИСП-МС

© 2017 г. М. В. Зайцева, С. Л. Вотяков

Масс-спектрометрия с индуктивно-связанной плазмой (ИСП) и лазерной абляцией (ЛА) проб, позволяющая реализовать высокоточный локальный анализ микроэлементного и изотопного состава минерального вещества, широко используется для решения разных петрологических задач. Циркон – основной минерал для U-Pb-датирования геологических объектов и детального изучения их Lu-Hf-изотопной системы как индикатора начальной истории и последующей эволюции геологического вещества [Griffin et al., 2004; Yuan et al., 2008]. Минерал характеризуется широко развитым изоморфизмом U и Hf, низким содержанием Lu и нерадиогенного Рb, высокой механической, химической и радиационной стойкостью - "способностью" к сохранению изотопной информации. Актуальна задача совершенствования локальных аналитических методик, в том числе ЛА-ИСП-массспектрометрии для исследования U-Pb- и Lu-Hfизотопных систем циркона.

Цель работы – отработка и апробация на ряде природных проб циркона методики его U-Pb-датирования и анализа его Lu-Hf-изотопной системы с использованием ИСП масс-спектрометров (МС) квадрупольного NexION 300S и многоколлекторного Neptune Plus с приставкой для ЛА NWR 213.

Оборудование и образцы. Определение U-Pbвозраста цирконов выполнено на квадрупольном ИСП-MC NexION 300S с приставкой для ЛА NWR 213; процедура измерения и алгоритм расчетов детально изложены в работе [Зайцева, 2016]. Исследование Lu-Hf-изотопной системы минерала выполнено на многоколлекторном ИСП-МС Neptune Plus с аналогичной приставкой для ЛА; результаты оптимизации работы этого МС и приставки для ЛА представлены в табл. 1. Использованное оборудование размещено в помещении класса чистоты 7 ИСО.

В качестве стандартных образцов для U-Pb-датирования и анализа изотопного состава Lu-Hf использованы пробы циркона Mud Tank, GJ-1, 91500, Plesovice [Black et al., 1978; Wiedenbeck et al., 1995; Jackson et al., 2004; Slama et al., 2008]. Расчет изотопных отношений Lu/Hf, Hf/Hf, а также значения ϵ (Hf) и модельного возраста проводился с использованием макроса Excel Hf-INATOR, следуя работе [Giovanardi, 2017].

Апробация предложенной методики выполнена на образцах циркона NP-46 и NP-47, выделенных из пород поздних интрузивных фаз раннекаменноугольного гранодиорит-гранитного Неплюевского плутона (Южный Урал), отобранных на западном склоне (высота 410.3 м) к югозападу от п. Снежный по дороге к п. Каракуль: образец NP-47 – из мелкозернистого гранодиорита, прорывающего гранитоиды главных интрузивных фаз Неплюевского плутона; NP-46 – из среднезернистого габбродиорита (подробная характеристика пород приведена в работах [Осипова, 2006, 2014]). Зерна циркона NP-46 и NP-47 (рис. 1) были независимо исследованы во ВСЕГЕИ (Санкт-Петербург) с использовани-

Габ	блица 1.	Операционные	параметры МС	Neptune P	lus и ЛА п	риставки NWR 2	:13
-----	----------	--------------	--------------	-----------	------------	----------------	-----

Параметр	MC	ЛА приставка
Мощность радиочастотного генератора, Вт	~950	_
Расход плазмообразующего газа Ar, л/мин	15	_
Расход вспомогательного газа Ar, л/мин	1	_
Расход пробоподающего газа Ar, л/мин	1	_
Время интегрирования сигналов, с	0.131	
Количество интегрирований	1	
Число циклов	500	
Расход транспортирующего газа Не, мл/мин	_	850
Плотность энергии лазерного излучения, Дж/см ²	_	12.5–13.5
Частота повторения импульсов, Гц	_	20
Диаметр кратера, мкм	_	50 (или 25)
Время работы лазера, с	_	50

К МЕТОДИКЕ ОПРЕДЕЛЕНИЯ U-Pb-BO3PACTA ЦИРКОНА

Рис. 1. СL-изображения (I) с участками зерен циркона NP-46 (а) и NP-47 (б), в которых был выполнен анализ в лаборатории ВСЕГЕИ, и ВЅЕ-изображения (II) с кратерами ЛА (ИГГ УрО РАН).

II – сканирующий электронный микроскоп JSM-6390LV; 1 – дно кратера после анализа во ВСЕГЕИ и снятия верхнего слоя зерна полировкой.

ЕЖЕГОДНИК-2016, Тр. ИГГ УрО РАН, вып. 164, 2017

ЗАЙЦЕВА, ВОТЯКОВ

Таблица 2. Средневзвешенные значения изотопных отношений ¹⁷⁶Hf/¹⁷⁷Hf, ¹⁷⁶Lu/¹⁷⁷Hf, ¹⁷⁶Yb/¹⁷⁷Hf, ε(Hf) и модельный возраст стандартных образцов циркона

Циркон	D,	Ν	$^{176}Hf/^{177}Hf \pm 2SD$	$^{176}Lu/^{177}Hf \pm 2SD$	176 Yb/ 177 Hf ± 2 SD	$\epsilon(Hf) \pm 2SD^1$	$T_{DM} \pm 2SD^2$,	$T_{DM}^{c} \pm 2SD^{3}$,
	мкм						млн лет	млн лет
Mud Tank	50	11	0.282504 ± 0.000004	0.000067 ± 0.000004	0.003016 ± 0.000003	6.76 ± 0.15	1030 ± 6	1218 ± 9
	25	7	0.282518 ± 0.000009	0.000073 ± 0.000009	0.003251 ± 0.000006	7.25 ± 0.31	1011 ± 12	1187 ± 19
GJ-1	50	14	0.282071 ± 0.000004	0.000297 ± 0.000004	0.010902 ± 0.000009	-11.51 ± 0.14	1633 ± 5	2282 ± 9
	25	8	0.282041 ± 0.000010	0.000294 ± 0.000010	0.011218 ± 0.000018	-12.56 ± 0.36	1672 ± 14	2346 ± 23
91500	50	9	0.282334 ± 0.000004	0.000298 ± 0.000004	0.010592 ± 0.000006	6.92 ± 0.15	1309 ± 6	1465 ± 10
	25	5	0.282305 ± 0.000010	0.000308 ± 0.000010	0.011237 ± 0.000018	6.88 ± 0.37	1311 ± 14	1467 ± 23
Plesovice	50	5	0.282492 ± 0.000006	0.000152 ± 0.000006	0.009092 ± 0.000017	-2.53 ± 0.21	1051 ± 8	1504 ± 13
	25	7	0.282457 ± 0.000007	0.000130 ± 0.000009	0.006774 ± 0.000017	-3.75 ± 0.26	1074 ± 12	1541 ± 19

¹ значение ε (Hf) рассчитано с использованием значений ¹⁷⁶Lu $\lambda = 1.867 \cdot 10^{-11}$, ¹⁷⁶Lu/¹⁷⁷Hf = 0.0332 и ¹⁷⁶Hf/¹⁷⁷Hf = 0.282772.

 2 модельный возраст источника, рассчитанный с учетом выплавления магмы из деплетированной мантии с использованием 176 Hf/ 177 Hf = 0.28325 и 176 Lu/ 177 Hf = 0.0384.

³ модельный возраст источника, рассчитанный по двухстадийной модели с использованием ¹⁷⁶Lu/¹⁷⁷Hf = 0.015, основанной на выплавлении магмы из средней континентальной коры, образованной из деплетированной мантии.

Примечание. D – диаметр кратера, N – число кратеров.

Рис. 2. Диаграмма ²⁰⁶Pb/²³⁸U vs ²⁰⁷Pb/²³⁵U для образцов циркона GJ-1 (A), Mud Tank (Б), 91500 (В) и Plesovice (Г). Здесь и на рис. 4 незалитый эллипс – значения изотопных отношений, соответствующие единичному измерению кратера; синий эллипс – средневзвешенные значения; сплошная линия – конкордия; погрешность – 10.

ЕЖЕГОДНИК-2016, Тр. ИГГ УрО РАН, вып. 164, 2017

II.	Dame	N	Возраст, млн лет			
циркон	D, MKM	IN	Конкордия $\pm 1\sigma$	$^{206}Pb/^{238}U\pm2\sigma$	$^{207}Pb/^{235}U\pm 2\sigma$	
Mud Tank	50	24	732.3 ± 3.3 , CKBO = 0.54	731 ± 8	738 ± 21	
GJ-1	50	46	601.1 ± 1.4 , CKBO = 0.42	601 ± 3	603 ± 7	
91500	50	36	1061.6 ± 3.1 , CKBO = 1.3	1060 ± 8	1068 ± 18	
Plesovice	50	16	334.4 ± 2.7 , CKBO = 0.073	332 ± 6	335 ± 18	

Таблица 3. Средневзвешенные значения U-Pb-возраста стандартных образцов циркона

Примечание. D – диаметр кратера, N – число кратеров.

Рис. 3. Вариации значений изотопного отношения 176 Hf/ 177 Hf в образцах циркона GJ-1 (a), Mud Tank (б), 91500 (в) и Plesovice (г) при диаметре кратера 50 и 25 мкм.

Горизонтальные пунктирные линии – значения ¹⁷⁶Hf/¹⁷⁷Hf из базы данных GeoREM; N – номер кратера.

ем как SHRIMP-методики для определения их U-Pb-возраста, так и ЛА-ИСП-МС для анализа Lu-Hf-изотопной системы минерала.

Результаты. С использованием разработанных алгоритмов определения U-Pb-возраста и анализа изотопных отношений Lu-Hf системы были проанализированы стандартные образцы циркона Mud Tank, GJ-1, 91500 и Plesovice. Оптимизацию операционных параметров ИСП-MC Neptune Plus проводили до минимизации времени и погрешности измерения и достижения максимума сигналов изотопов гафния с помощью стандартного мультиэлементно-

ЕЖЕГОДНИК-2016, Тр. ИГГ УрО РАН, вып. 164, 2017

го раствора Neptune Solution, содержащего 200 ppb Hf. Критерием при оптимизации операционных параметров приставки для ЛА NWR 213 служила согласованность полученных значений изотопного отношения ¹⁷⁶Hf/¹⁷⁷Hf в стандартах Mud Tank, GJ-1, 91500 и Plesovice с базой данных GeoREM при минимальной погрешности измерения. Средневзвешенные значения U-Pb-возраста, изотопного отношения ¹⁷⁶Hf/¹⁷⁷Hf и є(Hf) в этих образцах представлены в табл. 2, 3 и на рис. 2, 3; неопределенности единичного измерения в них изотопных отношений ²⁰⁶Pb/²³⁸U и ²⁰⁷Pb/²³⁵U в виде 1σ лежат в интерва-

Рис. 4. Диаграмма ²⁰⁶Pb/²³⁸U vs ²⁰⁷Pb/²³⁵U для проб циркона NP-46 (a), NP-47 (б).

Таблица 4. Значения	: U-Pb-возраста	проб циркона	и NP-46 и NP-47
---------------------	-----------------	--------------	-----------------

Циркон	Кратер ⁴	Возраст п	о данным ЛА-И	СП-МС ⁽¹⁾ ,	Возраст по данным SHRIMP ⁽²⁾ ,		
		Конкордия $\pm 1\sigma$,	$^{206}\text{Pb}/^{238}\text{U}^{3} \pm 1\sigma$,	207 Pb/ 235 U ³ ± 1 σ ,	Конкордия ± 1 σ,	$^{206}\text{Pb}/^{238}\text{U} \pm 1\sigma$,	207 Pb/ 235 U $\pm 1\sigma$,
		млн лет	млн лет	млн лет	млн лет	млн лет	млн лет
NP-46	2 1	$360.0 \pm 3.8,$	367 ± 10	365 ± 32	356.8 ± 1.3 ,	364 ± 5	365 ± 9
	5 1	CKBO = 3.9	355 ± 9	419 ± 31	СКВО = 0.70	354 ± 5	353 ± 8
	15_1		348 ± 15	329 ± 88		355 ± 3	350 ± 8
	7 1		385 ± 14	348 ± 43		357 ± 5	355 ± 8
	6 1		353 ± 11	405 ± 38		353 ± 5	352 ± 9
	14 1		349 ± 11	352 ± 37		354 ± 3	353 ± 8
	8 1		350 ± 13	388 ± 46		362 ± 5	358 ± 8
	9 1		357 ± 14	414 ± 50		366 ± 5	370 ± 21
NP-47	3 1	368 ± 6 ,	351 ± 16	288 ± 75	$360 \pm 2,$	362 ± 5	372 ± 30
	4 2	СКВО = 0.0003	378 ± 13	355 ± 63	СКВО = 0.041	363 ± 5	364 ± 12
	8 1		371 ± 18	349 ± 89		366 ± 5	352 ± 24
	6_1		368 ± 12	375 ± 58		353 ± 5	356 ± 11
	14 1		388 ± 18	444 ± 65		355 ± 5	354 ± 13
	161		346 ± 19	369 ± 64		363 ± 5	369 ± 15

Возраст, полученный в рамках процедуры измерения и расчета, представленной в настоящей работе.

² Возраст по данным, полученным в ВСЕГЕИ.

³ Возраст, полученный по уравнению радиоактивного распада.

⁴ Номер кратера согласно рис. 1.

лах 1.5–5 и 3–18 % соответственно, а неопределенность единичного измерения отношения ¹⁷⁶Hf/¹⁷⁷Hf в виде 2SD – в интервале 0.004–0.007% (все данные при диаметре кратера абляции – 50 мкм; при его уменьшении до 25 мкм неопределенность измерения отношения ¹⁷⁶Hf/¹⁷⁷Hf возрастает в 1.5–2 раза). Неопределенность единичного определения значения ϵ (Hf) в виде 2SD варьирует для перечисленных выше стандартов составляет 5–15%. Полученные в рамках разработанной методики значения U-Pbвозраста и Lu-Hf-изотопного состава в образцах сравнения циркона удовлетворительно согласуются с литературными данными [Black et al., 1978; Wiedenbeck et al., 1995; Jackson et al., 2004; Hong-Lin et al., 2008; Slama et al., 2008].

По аналогичным алгоритмам был проанализирован U-Pb-возраст и изотопный состав Lu-Hf для проб циркона NP-46 и NP-47. При U-Pb-датировании в качестве первичного стандарта использовался циркон GJ-1, который измерялся методом "взятия в вилку" (брекетинг) через 5–7 измеренных кратеров; также через 10–14 проб измерялись вторичные стандарты циркона Mud Tank, 91500 и Plesovice. При анализе состава Lu-Hf изотопной системы в качестве контрольного образца также использовался циркон GJ-1; полученные резуль-

ЕЖЕГОДНИК-2016, Тр. ИГГ УрО РАН, вып. 164, 2017

таты представлены в табл. 4–6 и на рис. 4. Следует отметить, что изученные зерна циркона NP-46 и NP-47 существенно неоднородны по составу (структуре), что фиксируется в том числе по их BSE- и CL-изображениям (см. рис. 1). Очевидно, что сопоставление аналитических данных, полученных в разных лабораториях (ВСЕГЕИ и ИГГ УрО РАН), возможно только при условии выбора для анализа схожих областей зерен, что и было реализовано нами при работе с зернами, первоначально исследованными во ВСЕГЕИ. Анализ и сопоставление результатов двух лабораторий (см. табл. 4–6) позволяет констатировать

по реализовано нами при работе с зернами, первоначально исследованными во ВСЕГЕИ. Анализ и сопоставление результатов двух лабораторий (см. табл. 4–6) позволяет констатировать, что полученные в рамках разработанной в настоящей работе методики значения U-Pb-возраста и Lu-Hf-изотопной системы в образцах циркона NP-46 и NP-47 согласуются с данными, полученными во ВСЕГЕИ. Отметим, что значения изотопного состава Lu-Hf системы при диаметре кратера 50 и 25 мкм, полученные нами, близки, что открывает перспективы использования методики ЛА-ИСП-МС с кратером 25 мкм для анализа гетерогенных зерен малого размера.

Авторы искренне признательны Т.А. Осиповой за предоставленные для исследования пробы циркона, а также результаты анализа зерен циркона во ВСЕГЕИ и неоценимый вклад в обсуждении результатов.

Работа выполнена в ЦКП УрО РАН "Геоаналитик" при финансовой поддержке гранта РНФ № 16-17-10283 и гранта РФФИ № 17-05-00618.

СПИСОК ЛИТЕРАТУРЫ

- Зайцева М.В., Пупышев А.А., Щапова Ю.В., Вотяков С.Л. U-Pb датирование цирконов с помощью квадрупольного масс-спектрометра с индуктивносвязанной плазмой NexION 300S и приставки для лазерной абляции NWR 213 // Аналитика и контроль. 2016. Т. 20, № 4. С. 294–306. DOI: 10.15826/analitika.2016.20.4.006
- Осипова Т.А. Новые данные о геологическом строении Неплюевского массива (Южный Урал) // Ежегодник-2005. Екатеринбург: ИГГ УрО РАН, 2006. С. 98–100.
- Осипова Т.А. Rb-Sr и U-Pb возраст гранитоидов заключительных фаз Неплюевского плутона (Южный Урал): проблемы датирования // Граниты и эволюция Земли: граниты и континентальная кора. Мат-лы II междунар. геол. конф., 17–20 авг. 2014 г. Новосибирск: СО РАН. 2014. С.161–162.
- Black L.P., Gulson B.L. The age of the Mud Tank carbonatite, Strangways Range, Northern Territory // J. Aust. Geol. Geophys. 1978. V. 3. P. 227–232.
- *Giovanardi T., Lugli F.* The Hf-INATOR: A free data reduction spreadsheet for Lu/Hf isotope analysis // Earth Sci. Inf. 2017. P. 1–7.
- Jackson S.E. et al. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology // Chem. Geol. 2004. V. 211. P. 47–69.
- Slama J. et al. Plesovice zircon A new natural reference material for U–Pb and Hf isotopic microanalysis // Chem. Geol. 2008. V. 249. P. 1–35.
- Wiedenbeck M. et al. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace-Element and REE Analyses // Geostandards Newsletter. 1995. V. 19, no. 1. P. 1–23.