ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ РЗЭ В ЦИРКОНЕ МЕТОДОМ ЭЛЕКТРОННО-ЗОНДОВОГО РЕНТГЕНОСПЕКТРАЛЬНОГО МИКРОАНАЛИЗА

© 2017 г. А. В. Михеева, Д. А. Замятин, С. Л. Вотяков

Данные о соотношении РЗЭ и их содержании, которое варьирует в природных цирконах от долей до десятков тысяч г/т, широко используются при петрогенетических построениях в геологии. При этом отсутствует систематика по составам для цирконов различного парагенезиса [Hoskin, Schaltegger, 2003]. В настоящее время для анализа содержаний РЗЭ в зернах циркона преимущественно применяется метод ЛА-ИСП-МС с погрешностью 1-10 г/т и локальностью (размером кратера абляции) 30-50 мкм; вследствие чего применение метода для исследования микрогетерогенных зерен циркона размером 50-200 мкм достаточно проблематично из-за малых размеров отдельных фрагментов их текстуры. Метод электронно-зондового микроанализа (ЭЗМА) облалает более высокой локальностью – 1–3 мкм. но меньшей чувствительностью, в том числе из-за значительного перекрывания рентгеноэмиссионных линий РЗЭ. Опубликованы единичные работы по определению содержания отдельных (пятишести) РЗЭ в минералах методом ЭЗМА: авторами S.J.B. Reed, A. Buckley [1998] решена проблема учета спектральных наложений линий РЗЭ подбором оптимальных операционных условий измерения; в статье V.V. Seckendorff [2000] отработана методика определения содержания La, Nd, Sm, Gd, Но, Үb в оливинах, орто- и клинопироксенах, достигнуты пределы обнаружения (ПО) 250-400 г/т. Pyle et al. [2002] разработали методику определения РЗЭ в монацитах с ПО ниже 500 г/т. Л.Ф. Суворова с соавторами [2006] предложили методику количественного определения содержания РЗЭ в редкометалльно-редкоземельных минералах; достигнуты ПО 0.2-0.4 мас. %. Тем не менее спектральные перекрывания и сложность разделения аналитических линий ограничивают круг определяемых РЗЭ в аналитической точке. Актуально развитие метода ЭЗМА для установления полного спектра РЗЭ в минералах, в том числе в цирконе, с достаточно низкими пределами ПО.

Цель работы – совершенствование и апробация на зернах циркона методики количественного определения содержания всех РЗЭ и У на микроанализаторе Cameca SX100 с пределами обнаружения не хуже 100–300 г/т. **Образцы.** В качестве стандартных образцов (СО) использовали синтетические алюмосиликатные стекла REE1 (Y, Pr, Dy, Er), REE2 (Се, Eu, Ho, Tm), REE3 (La, Sm, Gd, Yb), REE4 (Nd, Tb, Lu) с содержанием РЗЭ 4 мас. % и REEAll с содержанием всех РЗЭ 0.5 мас. %; изучены образцы циркона сравнения Mud Tank, Plesovice, GJ, 91500 [Slama et al., 2008; Heinonen, Andersen, 2010; Yue-Heng et al., 2014] и зерна гетерогенного циркона 8-6 и 5-1 метаморфических пород Мугоджар [Краснобаев, Давыдов, 1999].

ОБОРУДОВАНИЕ И МЕТОДИКА

Анализ выполнен на микроанализаторе Cameca SX 100 с пятью волновыми спектрометрами. Методика количественного определения содержания РЗЭ и Y в цирконе включала следующие этапы: выбор оптимальных параметров колонны (напряжения и силы тока пучка) и времени экспозиции, уточнение положения максимума аналитических линий и точек измерения фона, учет спектральных наложений линий, распределение аналитических линий РЗЭ и Y по кристалл-анализаторам LIF, LPET, LLIF, PET, LIF с учетом общего времени регистрации на каждом спектрометре и значений погрешности определения.

Оптимальное значение ускоряющего напряжения принято равным 15 кВ. При меньших значениях в спектрах не фиксируются рентгеновские линии РЗЭ, обладающие высоким потенциалом возбуждения, из-за чего сужается выбор аналитических линий. При более высоких значениях, напротив, количество характеристических линий увеличивается, что определяет большое число спектральных наложений.

В качестве аналитических использовали наиболее интенсивные линии рентгеновских эмиссионных спектров K_a , L_a , и M_a . Для решения проблемы спектральных наложений на СО прописаны профили линий элементов основного и примесного состава, на основе анализа которых определены положения максимумов линий и точек измерения фона. Для примера на рис. 1 показано наложение M-линий Tm, Yb, Er и K-линии Al; в этом случае измерение фона с двух сторон от аналитиче-

Рис. 1. Участок спектра с перекрывающимися *М*-линиями РЗЭ Тт, Yb, Er и *К*-линией Al.

Спектрометр с ТАР-кристаллом; вертикальными линиями обозначено положение максимумов М-, К-линий и точек измерения фона.

ских линий Tm M_a , Yb M_a , Al K_a затруднительно ввиду невозможности расположения точек измерения фона в непосредственной близости к максимуму пика линии; отсутствие наклонного линейного фона в спектре циркона в данном диапазоне позволило применить односторонний способ измерения интенсивности фона. В тех случаях, когда исключить наложение линий не представлялось возможным, учитывали вклад мешающей линии специальной процедурой [Amli, Griffin, 1975]. Учет наложений линий выполнен для всех анализируемых элементов.

Предел обнаружения является сложной функцией параметров прибора и операционных условий измерения. В частности, ПО зависит от силы тока и времени экспозиции. На рис. 2 представлены типичные зависимости ПО от силы тока при разном времени измерения для Y и Tm – двух РЗЭ с наименьшим и наибольшим значениями ПО. С повышением силы тока ПО снижается нелинейно и можно ожидать, что бесконечное возрастание силы тока не даст существенного уменьшения ПО, но создаст проблемы, связанные с ограниченной электронной проводимостью материала и напыления, нагреванием образца. Подобная нелинейность наблюдается с увеличением времени экспозиции. Минимальные значения ПО достигаются при силе тока выше 200-250 нА и времени экспозиции более 200 с. Оптимальные значения при условии сохранения стабильности флюоресценции и отсутствия деградации циркона составили 200 нА и 250-340 с.

Распределение аналитических линий элементов по пяти кристалл-анализаторам производили таким образом, чтобы значения времени изме-

Рис. 2. Зависимости ПО, г/т, для Y (а) и Tm (б) от силы тока, нА.

Время измерения, с: 1 – 50, 2 – 100, 3 – 150, 4 – 200, 5 – 300.

рения на каждом из спектрометров были сопоставимы; показатели времени экспозиции для элементов подбирали так, чтобы пределы обнаружения всех РЗЭ имели близкие значения, линии располагались в порядке увеличения численного значения положения центра аналитической линии для сокращения времени на поворот кристалл-анализатора. В результате оптимизации работы микроанализатора достигнуты следующие ПО, г/т: для Dy, Gd, Ce, Nd, Sm – 100–150; Yb, Ho, Pr – 150–200; Tb, Er, Eu, La, Lu – 200–300; погрешность определения 100–500 г/т. В серии из 20 точек ПО, г/т: для Yb, Dy, Gd, Ce, Nd, Pr, Sm, Y – 20–50; Er, Ho, Tb, Tm, Eu, La, Lu – 50–100; погрешность определения 100–200 г/т.

РЕЗУЛЬТАТЫ

Разработанная методика апробирована на контрольном образце REEAll со значением концентрации 0.5 мас. % РЗЭ. Установлено, что средние концентрации РЗЭ в серии из 20 точек (рис. 3а) в пределах погрешности совпадают с паспортными значе-

ЕЖЕГОДНИК-2016, Тр. ИГГ УрО РАН, вып. 164, 2017

Рис. 3. Результаты измерения содержания РЗЭ в стекле REEAll (а) и цирконе GJ (б).

Квадратами обозначено содержание РЗЭ [Heinonen, Andersen, 2010]; серыми прямоугольниками – достигнутые ПО; погрешность и ПО определены для серии из 20 точек [Ancey et al., 1978].

Рис. 4. BSE- (а, в) и CL-изображения (б, г) зерен 8-6 (а, б) и 5-1 (в, г) циркона метаморфитов Мугоджар. Числами обозначены аналитические точки.

ниями 5000 г/т. Выполнен анализ содержания РЗЭ в образцах циркона Mud Tank, Plesovice, GJ, Temora, 91500; для примера на рис. Зб представлены измеренные содержания РЗЭ в цирконе GJ; практически для всех элементов измеренные содержания оказались ниже достигнутых пределов обнаружения, что согласуется с данными из работы А.Р. Heinonen, T.B. Andersen [2010]. Апробация методики на CO и образцах сравнения показывает, что учет взаимного наложения линий выполнен корректно и методика позволяет анализировать образцы циркона широкого диапазона концентраций РЗЭ.

Выполнен анализ содержания РЗЭ в зернах циркона метаморфитов Мугоджар, имеющих сложную

ЕЖЕГОДНИК-2016, Тр. ИГГ УрО РАН, вып. 164, 2017

микротекстуру, что явно фиксируется по их BSE- и CL-изображениям (рис. 4, табл. 1). Выделены три зоны (I–III); наибольшее содержание РЗЭ установлено в зоне II; зона III – низкопримесная (для РЗЭ достигнуты ПО ниже 100 г/т) (рис. 5). Во всех выделенных зонах наблюдается типичное для циркона повышенное содержание тяжелых РЗЭ (Tb–Lu) по сравнению с легкими (La–Pr) и средними (Nd-Gd), а также практически одинаковый наклон распределения РЗЭ, что является признаком одного источника вещества. Величины концентрации тяжелых РЗЭ находятся в типичном для большинства зерен циркона диапазоне (от 10² до 10³ × хондрит). При этом содержание средних РЗЭ, напро-

МИХЕЕВА и др.

Зерно 8-6	Содержание Ү и РЗЭ, г/т														
	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
Ι	2092	319	480	197	508	320	450	745	213	330	432	543	602	804	845
II	27245	557	2849	275	1544	527	827	1723	485	3637	1143	2636	1058	4443	1194
III	992	25	40	10	34	36	37	115	58	161	221	288	98	463	176
ПО, г/т	25	91	51	83	42	56	83	57	67	64	60	73	102	80	75
Зерно 5-1	Содержание У и РЗЭ, г/т														
	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
I	1955	65	140	50	145	91	64	107	70	250	85	607	73	1058	133
II	9256	126	377	118	232	147	106	305	131	620	228	913	110	1323	304
III	782	35	57	51	64	52	31	51	6	173	14	336	25	467	94
ΠΟ Γ/Τ	24	96	71	93	53	66	50	68	79	53	55	86	108	91	89

Таблица 1. Средние по 10 точкам содержание РЗЭ и значения ПО в трех выделенных зонах (I–III) зерен 8-6 и 5-1 циркона метаморфитов Мугоджар

Рис. 5. РЗЭ-специализация зерен 8-6 (а) и 5-1 (б) циркона метаморфитов Мугоджар (зоны І-ІІІ).

тив, завышено, т. е. кривая распределения РЗЭ имеет слабый наклон (отношение Lu/Gd = 1.2, 0.7-1.0, 1.5-1.8 для зон I, II, III соответственно). Зоны I и II ассоциированы с метамиктным ядром зерна, представляющего собой реликт первичного циркона [Краснобаев, Давыдов, 1999]. Значения концентрации РЗЭ в ядре варьируют. Пониженная концентрация РЗЭ определена в зоне III, ассоциированной со стерильной и кристалличной каймой зерен [Вотяков и др., 2014]. Высокое содержание РЗЭ в совокупности с химическими и текстурными данными [Вотяков и др., 2014] указывают на то, что ядро сформировалось в результате вторичных процессов [Hoskin, Schaltegger, 2003]. Аномалии Еu и Ce являются признаками магматического образования и отсутствия преобразований в результате вторичных процессов, чего нельзя сказать ни об одной из выделенных зон.

Таким образом, на ряде образцов циркона разработана и апробирована методика количественного определения содержания всех РЗЭ и Y в минерале методом ЭЗМА с ПО 100–150 г/т для Dy, Gd, Ce, Nd, Sm; 150–200 г/т для Yb, Ho, Pr; 200–300 г/т для Tb, Er, Eu, La, Lu; погрешность определения 100–500 г/т. На основании соотношений и значений концентрации РЗЭ сделаны предположения об условиях образования и преобразования зерен циркона Мугоджар, находящиеся в согласии с заключениями ранее выполненных исследований [Краснобаев, Давыдов, 1999; Вотяков и др., 2014].

Работа выполнена в ЦКП УрО РАН "Геоаналитик" при финансовой поддержке гранта РНФ № 16-17-10283.

СПИСОК ЛИТЕРАТУРЫ

- Вотяков С.Л., Замятин Д.А., Щапова Ю.В., Поротников А.В., Краснобаев А.А. Особенности метамиктного состояния цирконов на основе анализа их микроскопических изображений и данных электроннозондового микроанализа // Докл. РАН. 2014. Т. 457, № 3. С. 332–336.
- Краснобаев А.А., Давыдов В.А. Цирконовая геохронология Талдыкского блока Мугоджар // Докл. РАН. 1999. Т. 366, № 1. С. 95–99.
- Суворова Л.Ф., Конев А.А., Конева А.А. Методические особенности исследования редкометалльноредкоземельных минералов методом рентгеноспек-

ЕЖЕГОДНИК-2016, Тр. ИГГ УрО РАН, вып. 164, 2017

трального микроанализа // Методы и объекты химического анализа. 2006. Т. 1, № 1. С. 35–40.

- Amli R., Griffin W.L. Microprobe analysis of REE minerals using empirical correction factors // Amer. Miner. 1975. V. 60. P. 599–606.
- Ancey M., Bastenaire F., Tixier R. Applications of statistical methods in microanalysis // Microanalysis and scanning electron microscopy / Ed. by F. Maurice, L. Meny, R. Tixier. Orsay, 1978. P. 319–343.
- Heinonen A.P., Andersen T.B. Re-evaluation of Rapakivi Petrogenesis: Source constraints from the Hf isotope composition of zircon in the Rapakivi Granites and associated mafic rocks of Southern Finland // J. Petrology. 2010. V. 31, no. 8. P. 1687–1709.
- Hoskin P.W.O., Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis // Rev. Miner. Geochem. 2003. V. 53, no. 1. P. 27–62.
- *Pyle J.M., Spear F.S., Wark D.A.* Electrone microprobe analysis of REE in apatite, monazite and xenotime: protocols

and pitfalls // Rev. Miner. Geochem. 2002. V. 48, no. 1. P. 337–362.

- *Reed S.J.B., Buckley A.* Rare-earth element determination in minerals by electrone-probe microanalysis: application of spectrum synthesis // Mineral. Mag. 1998. V. 62, no. 1. P. 1–8.
- Seckendorff V.V. Detection limits of selected rare-earth elements in electron-probe microanalysis // Eur. J. Mineral. 2000. V. 12. P. 73–93.
- Slama J., Kosler J., Condon D.J., Crowley J.L., Gerdes A., Hanchar J.M., Horstwood M.S.A., Morris G.A., Nasdala L., Norberg N., Schaltegger U., Schoene B., Tubrett M.N., Whitehouse M.J. Plesovice zircon – a new natural reference material for U-Pb and Hf-isotopic microanalysis // Chem. Geol. 2008. V. 239. P. 1–35.
- sis // Chem. Geol. 2008. V. 239. P. 1–35.
 Yue-Heng Y., Fu-Yuan W., Jin-Hui Y., Chew D.M., Lie-Wen X., Zhu-Yin C., Yan-Bin Z., Chao H. Sr and Nd isotopic compositions of apatite reference materials used in U-Th-Pb geochronology // Chem. Geol. 2014. V. 385. P. 35–55.