— ПЕТРОЛОГИЯ, ГЕОХИМИЯ =

ГЕОХИМИЯ КАМЕНСКОГО МИГМАТИТ-ПЛУТОНА (СРЕДНИЙ УРАЛ)

© 2018 г. М. Д. Вишнякова, Н. С. Бородина, Г. Б. Ферштатер

Каменский массив (KM) примыкает с юга к Адуйскому гранитному массиву. В KM обнажена зона развития мигматитов, в которой, по-видимому, происходили процессы магмогенерации, сформировавшие, по крайней мере, часть Адуйского массива. Анализ поведения петрогенных элементов показывает, что все разновидности пород KM образуют единые гомодромные тренды с закономерным изменением состава от мигматитов до гранитов, что подтверждает их генетическое родство. Тренды распределения редких и редкоземельных элементов, нормированные на хондрит, сходны во всех типах пород KM и близки трендам сходных по основности пород Верхисетского массива. Мигматизация, анатексис и обособление гранитного расплава происходили при P = 4.6-6.5 кбар и T = 620-723°C. Наблюдения за геологическими взаимоотношениями пород, изучение химического состава пород и минералов, P-T условий и геохимии пород KM показывают, что данный плутон может быть использован в качестве эталона гранитного магмообразования в ювенильной коре Уральского орогена.

Каменский мигматит-плутон располагается в палеоконтинентальной зоне северо-западного мегаблока Среднего Урала, примыкая с юга к Адуйскому гранитному массиву, самому крупному в этой зоне. В массиве прекрасно представлена зона мигматитов, в которой, по всей вероятности, происходила магмогенерация, сформировавшая, по крайней мере, часть Адуйского массива.

Гранитоиды северной части Каменского массива образуют тела овальной, удлиненной или неправильной формы и имеют большей частью гранитный состав. Центральная и южная части массива состоят преимущественно из гранодиоритов, в меньшей степени из кварцевых диоритов. Западная часть массива, представляющая его корневую зону, сложена полосчатыми мигматитами [Ферштатер и др., 2008], восточная – слабо мигматизированными и гомогенными гранодиоритами, адамеллитами и гранитами.

Анализы петрогенных элементов выполнены в ЦКП "Геоаналитик" лаборатории ФХМИ Института геологии и геохимии им. академика А.Н. Заварицкого УрО РАН (аналитики Н.П. Горбунова и Л.А. Татаринова). Содержание редких элементов определено методом ICP-MS в лабораториях Университета Гранады (Испания) (аналитики Ф. Беа, П. Монтеро) и Института геологии и геохимии (аналитики Д.В. Киселева, Н.В. Чередниченко).

Наименее кремнекислые разности мигматитов по химическому составу (табл. 1) соответствуют биотит-роговообманковым и биотитовым кварцевым диоритам и гранодиоритам, бедными калиевым полевым шпатом. Плагиоклаз в них отвечает Ап₂₀₋₃₄, часто имеет антипертитовое строение, что свидетельствует о сравнительно высокотемпературных условиях мигматизации. В адамеллитах и гранитах параллельно с увеличением содержания кварца возрастает содержание калишпата, который представлен преимущественно ортоклазом. В породах обычен мирмекит, свидетельствующий об абиссальных условиях их формирования. Биотит всегда характеризуется большей магнезиальностью #Mg = Mg/(Mg + Fe) по сравнению с сосуществующей роговой обманкой, что характерно для мигматизации, когда температурная устойчивость биотита выше, чем роговой обманки. Состав плагиоклаза в адамеллитах и гранитах An₁₁₋₂₈.

На диаграмме Ab–Q–Or валовые составы мигматитов и гранитов Каменского массива отвечают стандартному тренду, показанному на рис. 1 серой линией [Бородина и др., 2016]. Лейкосома полосчатых мигматитов сильно отличается по составу от кварц-полевошпатового минимума и эволюционирует в сторону этого минимума, обогащаясь кварцем и калишпатом. Эта эволюция сопровождается перемещением расплава, который кристаллизуется в виде штокверка гранитных обособлений и жил. Образующийся при этом ряд пород характеризуется примерно одинаковым содержанием нормативного калишпата, что подчеркивается направлением линий, соединяющих составы меланосомы и лейкосомы (рис. 2).

Содержание главных петрогенных элементов в породах Каменского массива приведено в табл. 1. На вариационных диаграммах (см. рис. 1) все разновидности образуют единые гомодромные тренды с закономерным изменением состава от мигматитов до гранитов, что подтверждает их генетическое родство. На классификационной диаграмме ($K_2O + Na_2O$) – SiO₂, нанесены граничные значения, используемые для разделения пород щелочного, субщелочного и нормального рядов [Петрографический кодекс..., 2008]. Все разновидности попадают в поле пород нормальной щелочности (см. рис. 1). При увеличении содержания кремнезема наблюдается четкая прямая отрицательная

21	53.42 0.26	11.92	5.57	0.21	9.63	8.77 1 90	1.59	0.01	1.10	12.81 20.42	2.29	0.46	202	115	21.70	74.00 138	10 07	25.84	10.86	33.87	11.68	10.70	0.81	C0.0 22.05	+C.02	0.10	0.44	0.33	1.2.1	0.32	2.36	6.43	0.97	5.01 0 2 1	0.12	1.91	0.32	2.30	0.50	1.46 0.23	1.58	0.23	312, 419,
20	63.43 0.67	15.73	2.20	0.08	2.81	3.31 4.76	3.21	0.55	0.80	20.22 57 98	1.55	1.50	1025	995	6.56 50 50	10.75	C/.CI	16 91	18.57	37.73	15.44	10.66	17.17	0.93	1.80	0.28	1.43	H. 0.	1 20	5.37	41.98	82.71	9.19	32.60	70.1 201.0	2.17	0.39	2.35	0.44	1.23	1.01	0.14	титах –
19	78.22 0.04	12.29	0.04	0.01	0.11	0.88 3.01	4.94	0.01	0.10	4.21 97 21	0.67	0.79	87.73	432	H. o.	4.65	0.43	1 45	4.79	3.59	14.44	0.93	0.31	0.03	2.06	0.15	0.27	H. 0.	1 01	3.78	4.62	7.79	0.65	1.85 150	17.0	0.16	0.02	0.11	0.03	0.10	0.20	0.05	в мигма
18	76.06 0.12	12.72	0.90	0.02	0.30	0.83 2 89	5.32	0.04	0.20	6.91 73 35	0.52	0.44	91.71	345	0.70	4 80	1 21	2.63	2.78	14.14	14.32	1.03	0.97	0.06 3.8 10	01.00	0.14	0.22	H. o.	21.09 0.65	2.07	1.45	3.08	0.32	21.1 200	0.12	0.24	0.03	0.18	0.04	0.13	0.16	0.03	ele жилы ۱۲
17	74.87 0.14	14.06	0.32	0.02	0.70	0.90	4.24	0.00	0.00	27.41 202	3.93	3.57	245	1092	0.75	4 3 3	080	21.73	35.17	82.59	15.03	4.83	2.38	0.19	1.48	1.51	3.82	1.79	0/.10	3.10	10.98	26.50	2.80	9.91	1.70	1.45	0.21	1.01	0.20	0.51	0.46	0.06	гранитн 120-17
16	74.68 0.19	14.02	0.04	0.02	0.70	1.11 4 76	4.05	0.03	0.23	26.06 52 44	0.95	0.94	203	559	1.41	14./2 274	574 7 46	202	9.27	118	14.20	3.11	2.94	20.40	1.20	0.65	0.93	0.39	20.75 0.75	2.75	7.59	17.85	1.68	5.68 0.0	0.00	0.72	0.10	0.55	0.11	0.33	0.33	0.05	11-14-
15	72.25	14.76	0.61	0.04	0.99	1.50	3.12	0.05	0.42	55.24 106	3.55	2.37	310	565	3.61	CU.C7	02.7 7 87	3.26	14.11	57.22	17.67	5.69	5.77	52.05	1.8.1	1.10	1.82	1.54	C7.C7	6.07	13.76	26.48	2.92	1 65	070	1.29	0.18	1.60	0.21	0.58	0.57	0.08	15, 417a;
14	75.85	13.19	0.08	0.01	0.40	0.75	1.51	0.00	0.15	12.56 7 72	0.56	1.46	51.37	148	3.91	4 03	0.41	0.00	5.92	0.00	9.71	5.21	1.43	11.0	1.66	0.06	0.84	0.20	4./1	0.46	1.16	3.09	0.59	3.06	0.00	0.96	0.16	1.07	0.26	0.73	0.73	0.11	coma – 3
13	73.07	15.56	0.48	0.00	0.39	1.02 4 97	4.91	0.00	0.11	7.25 86.40	1.20	4.18	138	256	2.12	4.07	47.4		39.58	0.00	19.52	8.57	3.23	0.62	4.43	0.14	0.50	0.56	C/.0C	7.52	8.24	13.78	1.37	4.29	26.0 9 C O	0.88	0.17	1.28	0.31	1.11	1.54	0.28) – лейкс
12	72.94 0.12	14.46	0.65	0.03	0.33	2.11	2.40	0.05	0.25	13.53 37.61	0.55	0.63	403	1213	1.68	77.0	1 05	4 17	11.93	37.10	12.87	4.33	1.95	0.10	3.28	1.10	0.41	0.71	19.41	4.82	13.91	25.87	2.53	8.91	1.54	0.94	0.12	0.79	0.18	0.53	0.63	0.10	314; 9, 1(
11	69.38 0.79	16.52	1.22	0.04	1.14	2.08	3.03	0.07	0.44	28.92 60.88	1.90	2.02	400	653	5.51	17 96	26.71	534	0.41	27.66	17.14	8.77	5.46	0.45	2.56	0.09	1.65	0.45	10.14 2 7 7	133	17.31	35.89	4.02	14.38	00.7	2.08	0.29	1.53	0.31	0.79	0.78	0.12	76, 409, .
10	68.49 0.40	15.98	1.78	0.06	1.17	3.18 4 33	2.96	0.17	0.40	11.75 35.63	0.83	1.11	932	1652	7.12	41.Jo	20.02	14 31	40.17	48.44	13.13	8.85	10.31	10.07	0.89	0.89	0.96	0.89	10.00 7.40	4.00	29.50	60.83	6.75	24.82	0/.0	2.43	0.32	1.94	0.36	0.96	0.88	0.12	ома – 41 тебо ми
6	63.95 0.57	16.77	1.55	0.06	2.39	3.48 5.68	2.12	0.18	0.47	31.76 41 54	1.86	1.67	752	713	8.47	40.60	0.07	76.33	30.18	85.60	19.39	12.96	5.89	0.45	2.25	0.23	2.27	1.96	20.02	444	24.02	50.52	6.32	24.64	10.4	3.56	0.48	2.47	0.46	1.29	1.13	0.16	меланос
8	59.46 0.78	17.11	2 50	0.08	2.96	4.49 5.68	1.87	0.37	0.62	36.75 51 44	1.39	1.64	837	670	13.82	0110	16.01	44 09	73.53	128	21.77	19.86	10.46	0.89	2.10	0.47	4.33	11.46	1 70	4.46	37.73	85.13	10.65	40.33	07.1	5.55	0.73	3.81	0.74	1.80	1.59	0.21	40; 6–8 –
6	56.71 0.93	17.14	H. o. 7 75	0.12	3.54	5.20 3.20	2.77	0.53	0.38	34.20 68 19	1.98	1.94	726	596	14.07	46 07	13.05	17.93	21.43	89.59	21.33	22.46	16.61	0.39	2.29	0.58	2.79	0.16	2 04	5.20	40.45	99.33	11.03	45.90	77.0 717	5.05	0.75	4.47	0.81	2.12	1.76	0.25	9 и Кам ⁴
9	52.67 1 35	17.32	4.57	0.13	5.24	4.41 2.49	3.94	0.67	1.79	67.39 121	6.43	1.29	794	483	10.99	04.48	04.40	5754	110	100	22.16	12.25	9.24	0.35 74 11	0.62	0.41	1.63	1.34	2 40	4.39	36.73	77.96	9.12	36.37	1.10	4.12	0.49	2.87	0.51	1.36	1.11	0.16	, 416a, 42
5	69.04 0.54	14.89	2.44	0.07	1.31	2.59 4.62	1.94	0.19	0.60	22.21 97.73	1.89	1.14	412	368	4.45	41.30	6 30	11 34	11.02	63.43	19.52	5.46	4.37	0.18	0.97	0.13	1.39	H. o.	0.64	4.36	17.91	33.36	3.27	10.31	10.1	1.36	0.17	1.00	0.20	0.56	0.0	0.06	308, 319
4	68.77 0.41	15.19	3.05	0.04	1.77	3.01 4 91	1.95	0.15	0.50	18.68 42 01	1.46	0.92	547	521	4.22	10.64	5 28	5 82	29.23	24.53	15.29	5.64	3.40	0.30	1.42 CU.UC	0.10	1.21	0.51	1 47	4.78	19.31	37.17	4.07	14.93 75	C/ .7	1.35	0.22	1.27	0.23	0.64	0.47	0.07	octaB) –
m	68.49 0.40	15.98	1.78	0.06	1.17	3.18 4 30	2.96	0.17	0.40	11.75 35.63	0.83	1.11	932	1652	7.12	41.70 00 00	5 54	14 31	40.17	48.44	13.13	8.85	10.31	0.49	0.80	0.89	0.96	0.89	10.U0	4.00	29.50	60.83	6.75	24.82	0/.0	2.43	0.32	1.94	0.36	0.96	0.88	0.12	аловый с тат 20
2	66.22 0.49	16.69	1.80	0.05	1.52	2.59	2.93	0.20	0.33	30.64 45 17	1.44	1.90	466	680	5.09	110	5 85	4 93	15.97	55.15	18.58	9.01	7.43	8C.U	2.32	0.54	1.92	0.49	1 22	3.99	19.18	39.52	4.37	08.cl	0.62	0.0 1.2.7	0.31	1.60	0.32	0.83	0.76	0.11	atutbi (B
-	55.51 1 88	19.83	0.96	0.09	3.10	5.17	2.09	0.38	1.37	36.08 31 49	1.65	1.11	826	606	13.71	9C 11	16 01	6 71	31.99	110	21.40	15.58	5.83	0.30	0.72	0.43	2.19	0.43	C7.CI	2.54	18.17	42.87	5.60	23.50	07.4 07.1	4.17	0.58	3.04	0.59	1.52	1.22	0.17	5 — МИГМ
Компонент	SiO ₂ TiO	Al_2O_3	Fe _O 3	MnO	MgO	CaO Na ₂ O	K,0	$P_2 \tilde{O}_5$	П. п. п.	Li Rh	CS	Be	Sr	Ba	Sc	> `	50	Z	Cu	Zn	Ga	Y	٩Ŋ	Ta 7r	Hf	Mo	Sn	T d	11	þÉ	La	Ce	Pr	pu Sur	оп Н.	Бц	Tb T	Dy	Ho	Er Tm	Ab	Lu	Примечание. 1– 200-201-15-10-

Таблица 1. Содержание петрогенных (мас. %) и редких (г/т) элементов в породах Каменского массива

ЕЖЕГОДНИК-2017, Тр. ИГГ УрО РАН, вып. 165, 2018

ЕЖЕГОДНИК-2017, Тр. ИГГ УрО РАН, вып. 165, 2018

Рис. 1. Вариационные диаграммы А. Харкера: TiO_2 -SiO₂, (Fe₂O₃ + FeO)-SiO₂, CaO-SiO₂, (Na₂O + K₂O)-SiO₂, K₂O-SiO₂, Rb-K.

Здесь и на рис. 3: 1 – однородные мигматиты, 2 – меланосома, 3 – лейкосома, 4 – гранитные жилы в мигматитах, 5 – граниты крупных тел, 6 – дайки. Серой линией здесь и на рис. 3 показаны направления трендов распределения изученных элементов.

Рис. 2. Диаграмма Ab-Q-Or (СІРW мезонормы) для пород Каменского (1-4) и Адуйского (5, 6) массивов.

1 – валовый состав мигматитов, 2 – меланосома, 3– лейкосома, 4 – граниты крупных тел, 5 – граниты (Ад-3 и Ад-4) из западной части массива, 6 – средний состав гранита. Тонкими линиями соединены составы меланосомы и лейкосомы. Серой стрелкой показан тренд эволюции анатектического расплава. Штриховые линии – кварц-полевошпатовая котектика при An/(An + Ab) = 0.4 и 0.2 [Ферштатер, 1987].

корреляция содержания TiO_2 , FeO_{obill} , CaO. Содержание K_2O примерно постоянно в интервале пород от главных разностей мигматитов и отчетливо возрастает в гранитных дифференциатах. В гранитных жилах мигматитов содержание K_2O заметно колеблется (см. рис. 1, табл. 1).

Содержания редких и редкоземельных элементов приведены в табл. 1 и на рис. 3. Большинство рассматриваемых элементов обнаруживают корреляцию с количеством кремнезема в породах, т. е. закономерно меняют концентрацию в ходе эволюции. При увеличении содержания кремнезема наблюдается снижение содержания Sr, Y, Li. Жильные граниты мигматитов характеризуются повышенным содержанием Y, Zr и низким – Sr. Для всех пород Каменского массива характерен четкий положительный тренд Hf–Zr. Содержание Ва не зави-

Рис. 3. Вариационные диаграммы Sr–SiO₂, Ba–SiO₂, Y–SiO₂, Zr–SiO₂, Rb–Sr, Li–SiO₂, Hf–Zr.

Рис. 4. Распределение редких и редкоземельных элементов в Каменском массиве.

Фиолетовой линией показаны однородные мигматиты, черной – меланосома, черной штриховой – лейкосома, синей – граниты в мигматитах, красной – граниты, зеленой – дайки, оранжевой – средний состав пород Верхисетского массива.

сит от типа пород. На диаграмме Rb–Sr концентрация Sr возрастает от гранитов к мигматитам, при этом содержание Rb практически не меняется.

Тренды распределения редких и редкоземельных элементов, нормированные на хондрит, сходны во всех типах пород Каменского массива и близки трендам пород Верхисетского массива (рис. 4), ла-

ЕЖЕГОДНИК-2017, Тр. ИГГ УрО РАН, вып. 165, 2018

Геотермобарометр	Однородный мигматит	Гранитные жилы	Мигматизированная					
	(308)	в мигматитах (312)	дайка диорита (430)					
РІ-Атр [Ферштатер, 1990]	4.8-6.2 кбар	5.6–6.5 кбар	5.7-6.5 кбар					
Amp [Schmidt, 1993]	5.0-6.8 кбар	5.1–5.7 кбар	5.4–5.9 кбар					
Pl-Amp [Holland, Blundy, 1994]	4.6-6.3 кбар	5.0–5.7 кбар	5.4–5.9 кбар					
Pl-Amp [Holland, Blundy, 1994]	702–722°C	672–681°C	672–676°C					
Ti-Amp °C [Otten, 1984]	644–710°C	620–649°C	643–661°C					

Таблица 2. Р-Т параметры формирования пород Каменского массива

теральным аналогом которого является Каменский [Рапопорт, Рудица, 2000]. Во всех породах массива отмечаются отрицательные Nb, Ti-аномалии, положительные аномалии Pb, Sr и Li (тренды, нормированы по MORB), что отражает, по-видимому, влияние флюида, рожденного в зоне субдукции. Также наблюдаются положительные аномалии HFSE (Zr и Yb) в гранитах, в других породах они слабые отрицательные. Породы Каменского массива в целом характеризуются особенностями распределения редких элементов, отражающими их надсубдукционную природу.

Мигматизация, анатексис и обособление гранитного расплава происходили при давлении 4.6– 6.5 бар и температуре 620–723°С, судя по равновесию главных породообразующих минералов (табл. 2).

Наблюдения за геологическими взаимоотношениями пород, изучение химического состава пород и минералов, Р-Т условий образования, а также геохимических особенностей пород Каменского массива показывают, что он может быть использован в качестве эталона гранитного магмообразования в ювенильной коре Уральского орогена.

Работа выполнена в рамках темы № АААА-А18-11805250029-6 государственного задания ИГГ УрО РАН.

СПИСОК ЛИТЕРАТУРЫ

- Бородина Н.С., Замятина М.Д., Ферштатер Г.Б. Новые данные по петрологии и геохимии гранитоидов корневой зоны Адуйского массива // Ежегодник-2015. Екатеринбург: ИГГ УрО РАН, 2016. С. 80–85.
- Петрографический кодекс России. Магматические, метаморфические, метасоматические, импактные образования. Изд. 2-е. СПб.: ВСЕГЕИ, 2008. 200 с.
- Рапопорт М.С., Рудица Н.И. Магматическая геология позднегерцинских орогенных гранитоидов Урала // Магматические и метаморфические образования Урала и их металлогения. Екатеринбург: ИГГ УрО РАН, 2000. С. 116–129.
- Ферштатер Г.Б. Петрология главных интрузивных ассоциаций. М.: Наука, 1987. 232 с.
- Ферштатер Г.Б. Эмпирический плагиоклаз-роговообманковый барометр // Геохимия. 1990. № 3. С. 328.
- Ферштатер Г.Б., Бородина Н.С., Холоднов В.В. Мигматизация в Каменском тоналит-гранодиорит-гранитном массиве как один из источников пермских гранитов // Ежегодник-2007. Екатеринбург: ИГГ УрО РАН, 2008. С. 182–188.
- *Holland T., Blundy J.* Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry // Contrib. Mineral. Petrol. 1994. V. 116. P. 433–447.
- *Otten M.T.* The origin of brown hornblende in the Artfjallet gabbro and dolerites // Contrib. Mineral. Petrol. 1984. V. 86. P. 189–99.
- Schmidt M.W. Phase relations and compositions in tonalite as a function of pressure: an experimental study at 650°C // Amer. J. Sci. 1993. V. 293. P. 1011–1060.