# ВОЗРАСТНЫЕ И Lu-Hf-ИЗОТОПНО-ГЕОХИМИЧЕСКИЕ ХАРАКТЕРИСТИКИ МОДЕЛЬНЫХ ИСТОЧНИКОВ ИЛЬМЕНО-ВИШНЕВОГОРСКОГО И БУЛДЫМСКОГО КАРБОНАТИТОВЫХ КОМПЛЕКСОВ, ЮЖНЫЙ УРАЛ

## © 2018 г. И. Л. Недосекова

На основе исследований Lu-Hf изотопной системы цирконов проведена оценка возраста и состава модельных источников карбонатитовых комплексов Урала (Ильмено-Вишневогорского миаскиткарбонатитового (ИВК) и Булдымского карбонатит-ультрабазитового). Установлено, что субстрат плавления Булдымского комплекса отличается от субстрата магм ИВК возрастом и изотопным составом (долей деплетированного и обогащенного материала в мантийном субстрате). Для миаскиткарбонатитового комплекса (ИВК) модельный возраст субстрата по одностадийной модели, предполагающей генерацию магм из деплетированной мантии,  $T_{DM} = 600-900$  млн лет, а для Булдымского ультрабазит-карбонатитового комплекса модельный возраст субстрата  $T_{DM} = 900-1000$  млн лет. По двухстадийной модели, предполагающей коровый источник магмогенерации ( $T_{DMC}$ ), также устанавливается разница в возрастах субстрата:  $T_{DMC} = 900-1250$  млн лет – ИВК миаскит-карбонатитовый комплекс,  $T_{DMC} = 1300-1490$  млн лет – Булдымский комплекс.

#### ВВЕДЕНИЕ

Исследования изотопных систем широко используются в геохимии для установления источников вещества породных комплексов. Относительная стабильность Hf-изотопии в цирконе позволяет использовать изотопы гафния для решения вопросов происхождения и изотопной эволюции различных пород [Patchett et al., 1981; Schärer et al., 1997; Amelin et al., 1999]. Использование Lu-Hf изотопной системы цирконов как наиболее стабильной и информативной позволяет оценить источники и возраст субстрата плавления, а также установить этапы магмогенерации и эволюции исследуемых породных комплексов.

Нами получены Lu-Hf изотопные данные для щелочных карбонатитовых комплексов Среднего Урала – Ильмено-Вишневогорского миаскиткарбонатитового (ИВК) и Булдымского карбонатитультрабазитового, установлен возраст щелочного и карбонатитового магматизма [Краснобаев и др., 2010а, б; 2014, 2015; Недосекова, 2012; Недосекова, Беляцкий, 2012], а также источники вещества этих карбонатитовых комплексов [Недосекова и др., 2009; Недосекова и др., 2010; Nedosekova et al., 2013]. В этой работе проведена оценка возраста и состава модельных источников исследованных карбонатитовых комплексов, что позволило предложить две модели магмагенерации и установить возрастные этапы эволюции карбонатитовых комплексов Урала.

### ГЕОЛОГИЧЕСКАЯ ХАРАКТЕРИСТИКА И ОБРАЗЦЫ

Ильмено-Вишневогорский карбонатит-миаскитовый и Булдымский карбонатит-ультрабазитовый комплексы находятся на Среднем Урале, в Сысертско-Ильменогорском антиклинории, представляющем собой блок докембрийских (PR<sub>1-2</sub>) пород, залегающий среди уральских палеозойских палеоокеанических комплексов [Пучков, 2010]. Многочисленные пластовые и дайковые тела миаскитов, сиенитов, миаскит-пегматитов и карбонатитов ильмено-вишневогорского комплекса внедрены в субмеридиональную тектоническую зону протяженностью более 100 км в осевой части антиклинория, а в замках Ильменогорской антиклинали залегают два крупных интрузивных массива миаскитов – Вишневогорский (в северном замке антиклинали) и Ильменогорский (в южном замке антиклинали). Пластовые, линзовидные, дайковые и жильные тела карбонатитов с редкометалльной минерализацией (севиты I и севиты II) широко развиты в апикальной части Вишневогорского массива, а также встречаются в его корневой части и экзоконтактовом фенитовом ореоле Вишневогорского и Ильменогорского интрузивов [Левин и др., 1997; Недосекова и др., 2009; Nedosekova et al., 2013].

Булдымский карбонатит-ультрабазитовый комплекс представлен Булдымским, Спирихинским, Халдихинским и другими массивами ультрабазитов, залегающими в докембрийских породах вишневогорской и ильменогорской свит (PR<sub>1</sub>), в обрамлении Вишневогорского и Ильменогорского миаскитовых интрузивов. Карбонатиты (доломиткальцитовые севиты III и бефорситы) в массивах ультрабазитов образуют жильные тела протяженностью в сотни метров, сопровождающиеся мощными зонами карбонат-флогопит-рихтеритовых, флогопит-рихтеритовых и флогопитовых метасоматитов с редкометалльно-редкоземельной минерализацией [Левин и др., 1997; Недосекова, 2007].

Возраст формирования миаскитов и карбонатитов ИВК по данным Rb-Sr, U-Pb, Sm-Nd геохронологии составляет 440–390 млн лет [Кононова и др., 1979; Крамм и др., 1993; Кramm et al., 1993; Краснобаев и др., 2010а, 6; 2014; Недосекова, 2012; Недосекова, Беляцкий, 2012; Недосекова и др., 2014], что свидетельствует о многостадийном магмообразовании на этапе палеозойской активизации. Кроме того, во всех породах комплекса U-Pb и Rb-Sr методами датируются более поздние процессы щелочного метасоматоза и пегматитообразования, связанные с герцинской орогенией (360–320 млн лет) и последующим постколлизионным растяжением (260–240 млн лет) [Крамм и др., 1993; Краснобаев и др., 2010a, 6; Недосекова, 2012].

Массивы Булдымского карбонатит-ультрабазитового комплекса согласно легенде гос. геологической карты [Петров и др., 2010] относятся к баикскому комплексу ультрабазитов протерозойского возраста (PR). U-Pb-SHRIMP-датированием цирконов Булдымского массива установлен нижнесилурийский (432.0 ± 1.5) возраст их образования, а также более молодые возрастные кластеры, интерпретированные как возраст преобразований, продолжающихся до среднего девона включительно (D<sub>2</sub>) [Краснобаев и др., 2015]. Так же, как в ильменовишневогорском комплексе, в породах Булдымского массива установлены цирконы пермского возраста (275-263 млн лет) [Краснобаев и др., 2015] и  $268 \pm 6$  [Недосекова и др., 2016], формирование которых связано с позднеколлизионным этапом уральской орогении.

Состав изотопов Hf определен для цирконов ИВК – из миаскитов (обр. И-15, с-з миаскиты, Ильменогорский массив; обр. В-12, пегматоидные миаскиты, Вишневогорский массив, обр. И-20, пегматоидный миаскит, Ильменогорский массив), из миаскит-пегматитов (обр. Krv-5, обр. Vnp, Вишневогорский массив), из карбонатитов (обр. 354, севит I, Вишневогорский массив); для цирконов Булдымского комплекса – из бефорситов (обр. К-103).

Детальное описание образцов, химические и микропримесные составы пород приведены в работах [Прибавкин, Недосекова, 2006; Недосекова, 2007, 2012; Недосекова и др., 2009, 2016].

### МЕТОДЫ ИССЛЕДОВАНИЯ

Исследования Lu-Hf-изотопных составов цирконов ИВК и Булдымского карбонатитовых комплексов методом лазерной абляции в совокупности с масс-спектрометрией с ионизацией в индуктивно связанной плазме были проведены в Национальном Центре CCFS-GEMOC, Университет Макуори, г. Сидней, Австралия. Для изотопного анализа Hf был использован ультрафиолетовый лазер UP213 New Wave / Merchantek в комплекте с мультиколлекторным MC-ICP MS Nu-Plasma. Для U-Pb-датирования и определения концентрации редких элементов в цирконе применялся ультрафиолетовый лазер UP266 New Wave / Merchantek в комплекте с Agilent 7000 ICP MS. Анализы были выполнены с диаметром пучка 30-50 мкм. Время абляции – 100–120 с, глубина кратера – 40–60 мкм. Ошибка определения <sup>176</sup>Hf/<sup>177</sup>Hf отношения составляет  $\pm 0.00002$  (2 $\sigma$ ), что эквивалентно  $\pm 0.7$  єНf. Детально методика определения изотопов Hf описана ранее [Griffin et al., 2000].

### РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ И ИХ ОБСУЖДЕНИЕ

Результаты исследования Lu-Hf-изотопного состава цирконов ИВК и Булдымского комплекса приведены в табл. 1 и на рис. 1.

Цирконы миаскитов ИВК имеют широкий диапазон изотопных составов гафния, который значительно меняется от образца к образцу (EHf от -0.9 до +11.8) (см. табл. 1). Ранние популяции цирконов (Zr1, Zr2) (с U-Pb индивидуальным возрастом зерен 446-384 млн лет) показывают от умеренно радиогенных до радиогенных изотопных составов Нf (ɛHf от +3.1 до +10.7). Поздние цирконы (Zr3, Zr4) (с U-Pb возрастом 222-314 млн лет) из пегматоидных миаскитов имеют менее радиогенный изотопный состав Hf со средним значением єHf +3.3 (обр. И-20, n = 4) и +3.7 (обр. V12, n = 6); в цирконах миаскит-пегматитов среднее значение єHf +1.6 (обр. KRV5, n = 4); в цирконе из гидротермально измененного миаскит-пегматита еще менее радиогенный Hf (среднее значение  $\varepsilon$ Hf +0.6, n = 3, обр. Vnp).

Изученные цирконы карбонатитов ИВК также имеют радиогенный и умеренно радиогенный изотопный состав Hf с меньшими вариациями єHf от +1.7 до +11.4 по сравнению с миаскитовым цирконом (см. табл. 1). Ранние популяции циркона (Zr I), формирующиеся на ранней карбонатитовой стадии (с U-Pb индивидуальным возрастом зерен 424– 404 млн лет) [Недосекова и др., 2015], показали вариации єHf от +4.7 до +11.4 (в среднем єHf +6.9). Популяция цирконов II (Zr II) (с возрастом 423– 390 млн лет), кристаллизующихся на более поздних стадиях эволюции щелочно-карбонатитового расплава [Недосекова и др., 2016], имеет близкий, но менее радиогенный изотопный состав Hf (єHf от +1.7 до +8.0; среднее значение +5.9).

Поздние генерации циркона (Zr III, с U-Pb возрастом 254–347 млн лет), образующие каймы и об-

|    | $\mathrm{T}_{\mathrm{DMC}},$ $\mathrm{Ga}$          |               |                | 1.03     | 0.66     | 0.92     | 0.87    |                | 1.00     | 1.03     | 1.07     | 1.13     | 1.06    |                 | 1.03     | 1.15     | 0.53     | 1.20     | 1.10     | 1.08     | 1.0     |               | 1.11     | 1.14     | 1.20     | 1.25     | 1.17    |                | 1.16     | 1.10     | 1.19     | 1.15    |
|----|-----------------------------------------------------|---------------|----------------|----------|----------|----------|---------|----------------|----------|----------|----------|----------|---------|-----------------|----------|----------|----------|----------|----------|----------|---------|---------------|----------|----------|----------|----------|---------|----------------|----------|----------|----------|---------|
|    | ${ m T}_{ m DM}, { m Ga}$                           |               |                | 0.82     | 0.57     | 0.70     | 0.70    |                | 0.75     | 0.77     | 0.80     | 0.84     | 0.79    |                 | 0.83     | 0.89     | 0.46     | 0.89     | 0.82     | 0.79     | 0.78    |               | 0.89     | 0.88     | 0.88     | 0.86     | 0.88    |                | 0.86     | 0.81     | 0.87     | 0.85    |
|    | 1σ                                                  |               |                | 0.6      | 0.8      | 0.7      |         |                | 0.6      | 0.7      | 0.6      | 0.6      |         |                 | 0.4      | 0.4      | 0.6      | 0.6      | 0.5      | 0.7      |         |               | 0.4      | 0.4      | 0.4      | 0.3      |         |                | 0.3      | 0.5      | 0.2      |         |
|    | εHf(T)                                              |               |                | 4.7      | 10.7     | 4.3      | 6.6     |                | 3.1      | 2.5      | 1.8      | 0.8      | 3.3     |                 | 5.1      | 2.2      | 11.8     | 0.3      | 1.8      | 1.2      | 3.7     |               | 4.0      | 2.3      | 0.6      | 0.5      | 1.8     |                | 0.6      | 1.4      | -0.2     | 0.6     |
|    | <sup>176</sup> Hf/ <sup>177</sup> Hf(T)             | плекс         |                | 0.282660 | 0.282844 | 0.282750 |         |                | 0.282712 | 0.282699 | 0.282680 | 0.282650 |         |                 | 0.282653 | 0.282609 | 0.282921 | 0.282609 | 0.282661 | 0.282681 |         |               | 0.282611 | 0.282620 | 0.282617 | 0.282632 |         |                | 0.282633 | 0.282668 | 0.282623 |         |
| 1. | <sup>206</sup> Pb/ <sup>238</sup> U-age,<br>млн лет | скитовый ком  |                | 410      | 384      | 250      |         |                | 446      | 250      | 250      | 250      |         |                 | 439      | 377      | 314      | 291      | 277      | 222      |         |               | 455      | 368      | 280      | 250      |         |                | 268      | 250      | 250      |         |
|    | $Yb^{176}/Hf^{177}$                                 | обонатит-мия  |                | 0.00833  | 0.05663  | 0.03531  |         |                | 0.03391  | 0.02043  | 0.02251  | 0.03248  |         |                 | 0.00254  | 0.00325  | 0.07881  | 0.00466  | 0.00694  | 0.00398  |         |               | 0.00969  | 0.01382  | 0.00160  | 0.00138  |         | кий массив     | 0.00163  | 0.00132  | 0.00114  |         |
|    | <sup>176</sup> Lu/ <sup>177</sup> Hf                | огорский ка   |                | 0.00024  | 0.00161  | 0.00000  |         | 8              | 0.00079  | 0.00054  | 0.00050  | 0.00069  |         |                 | 0.00007  | 0.00009  | 0.00184  | 0.00013  | 0.00018  | 0.00011  |         |               | 0.00030  | 0.00035  | 0.00004  | 0.00004  |         | Вишневогорс    | 0.00004  | 0.00003  | 0.00003  |         |
|    | 1σ                                                  | мено-Вишнев   |                | 0.000017 | 0.000020 | 0.000020 |         | орский масси   | 0.000016 | 0.000020 | 0.000016 | 0.000017 |         | эрский массив   | 0.000012 | 0.000012 | 0.000018 | 0.000018 | 0.000014 | 0.000019 |         | кий массив    | 0.000012 | 0.000011 | 0.000010 | 0.00000  |         | кит-пегматит,  | 0.00008  | 0.000015 | 0.000007 |         |
| 1  | $\mathrm{Hf}^{176}/\mathrm{Hf}^{177}$               | <b>UJI</b> bi | рский массив   | 0.282662 | 0.282856 | 0.282754 |         | кит, Ильменог  | 0.282719 | 0.282702 | 0.282682 | 0.282653 |         | ит, Вишневого   | 0.282654 | 0.282610 | 0.282932 | 0.282610 | 0.282662 | 0.282681 |         | Вишневогорс   | 0.282614 | 0.282622 | 0.282617 | 0.282632 |         | сненный миасі  | 0.282633 | 0.282668 | 0.282623 |         |
|    | Точки<br>анализа                                    |               | т, Ильменого   | 15-01*   | 15-03C*  | 15-03R*  | Среднее | оидный миасн   | I-20-01* | I-20-04* | I-20-05* | I-20-06* | Среднее | идный миаск     | V12-04   | V12-03C  | V12-14   | V12-11   | V12-11r  | V12-18   | Среднее | ит-пегматит,  | KRV5-3R  | KRV5-4   | KRV5-1   | KRV5-2C  | Среднее | рмально изме   | Vnp-01A  | Vnp-01B  | Vnp-02   | Среднее |
|    | Популяции<br>циркона                                |               | ) И-15, миаски | Zr 2     | Zr 2     | Zr 3     |         | УИ-20, пегмато | Zr 1     | Zr 3     | Zr 3     | Zr 3     |         | у V12, пегмато. | Zr 1     | Zr 3     | Zr 3     | Zr 4     | Zr 4     | Zr 3     |         | у KRV5, миаск | Zr I     | Zr 4     | Zr 4     | Zr 4     |         | о Vnp, гидроте | Zr 4     | Zr 4     | Zr 4     |         |
|    | $M_{0}$                                             |               | O6p            | 1        | 7        | ω        |         | O6p            | 4        | 5        | 9        | 7        |         | 06p             | ~        | 6        | 10       | 11       | 12       | 13       |         | 06F           | 14       | 15       | 16       | 17       |         | O6F            | 18       | 19       | 20       |         |

Таблица 1. Lu-Hf изотопные данные для цирконов из миаскитов, миаскит-пегматитов и карбонатитов ИВК

ЕЖЕГОДНИК-2017, Тр. ИГГ УрО РАН, вып. 165, 2018

# НЕДОСЕКОВА

| Табль              | аца 1. Окончанис                                                   | 60                                                                            |                                                     |                                                                        |                                                    |                             |                                                      |                                                   |                             |                        |                                           |                                            |
|--------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------|-----------------------------|------------------------------------------------------|---------------------------------------------------|-----------------------------|------------------------|-------------------------------------------|--------------------------------------------|
| No                 | Популяции<br>циркона                                               | Точки<br>анализа                                                              | $\mathrm{Hf}^{176}/\mathrm{Hf}^{177}$               | 1σ                                                                     | $^{176}\mathrm{Lu}/^{177}\mathrm{Hf}$              | $Pb^{176}/Hf^{177}$         | <sup>206</sup> Pb/ <sup>238</sup> U-age,<br>MJH JIET | $^{176}\mathrm{Hf}/^{177}\mathrm{Hf}(\mathrm{T})$ | εHf(T)                      | lσ                     | $\mathrm{T}_{\mathrm{DM}},$ $\mathrm{Ga}$ | $\mathrm{T}_{\mathrm{DMC}},$ $\mathrm{Ga}$ |
| 0                  | )бр. 354, севит I,                                                 | Вишневогорс                                                                   | ский массив, к                                      | орневая часть                                                          |                                                    |                             |                                                      |                                                   |                             |                        |                                           |                                            |
| 15                 | ZrI                                                                | 354-01c                                                                       | 0.282858                                            | 0.000019                                                               | 0.002129                                           | 0.102694                    | 422                                                  | 0.282841                                          | 11.4                        | 0.7                    | 0.58                                      | 0.65                                       |
| 16                 | ZrI                                                                | $354-04c_1$                                                                   | 0.282731                                            | 0.000013                                                               | 0.001145                                           | 0.054121                    | 424                                                  | 0.282722                                          | 7.2                         | 0.5                    | 0.74                                      | 0.90                                       |
| 17                 | ZrI                                                                | 354-02                                                                        | 0.282726                                            | 0.000022                                                               | 0.001098                                           | 0.052892                    | 417                                                  | 0.282717                                          | 6.9                         | 0.8                    | 0.75                                      | 0.91                                       |
| 18                 | ZrI                                                                | 354-24                                                                        | 0.282715                                            | 0.000011                                                               | 0.000562                                           | 0.025191                    | 410                                                  | 0.282711                                          | 6.5                         | 0.4                    | 0.75                                      | 0.93                                       |
| 19                 | ZrI                                                                | 354-32                                                                        | 0.282664                                            | 0.000014                                                               | 0.000306                                           | 0.014146                    | 409                                                  | 0.282662                                          | 4.7                         | 0.5                    | 0.82                                      | 1.03                                       |
| 20                 | Zr I                                                               | 354-28                                                                        | 0.282679                                            | 0.000016                                                               | 0.002028                                           | 0.088471                    | 404                                                  | 0.282664                                          | 4.7                         | 0.6                    | 0.84                                      | 1.03                                       |
| 21                 | Zr I                                                               | 354-06c                                                                       | 0.282729                                            | 0.000019                                                               | 0.000805                                           | 0.032308                    | 417                                                  | 0.282723                                          | 7.1                         | 0.7                    | 0.74                                      | 0.90                                       |
|                    |                                                                    | Среднее                                                                       |                                                     |                                                                        |                                                    |                             |                                                      |                                                   | 6.9                         |                        | 0.75                                      | 0.91                                       |
| 22                 | Zr II                                                              | 354-13c                                                                       | 0.282745                                            | 0.000014                                                               | 0.000055                                           | 0.002332                    | 423                                                  | 0.282745                                          | 8.0                         | 0.5                    | 0.70                                      | 0.85                                       |
| 23                 | Zr II                                                              | 354-01r                                                                       | 0.282760                                            | 0.000017                                                               | 0.001042                                           | 0.047394                    | 391                                                  | 0.282752                                          | 7.5                         | 0.6                    | 0.70                                      | 0.85                                       |
| 24                 | Zr II                                                              | 354-27                                                                        | 0.282743                                            | 0.000018                                                               | 0.001963                                           | 0.086287                    | 411                                                  | 0.282728                                          | 7.1                         | 0.6                    | 0.74                                      | 0.89                                       |
| 25                 | Zr II                                                              | 354-13r                                                                       | 0.282719                                            | 0.000023                                                               | 0.000126                                           | 0.005426                    | 404                                                  | 0.282718                                          | 6.6                         | 0.8                    | 0.74                                      | 0.91                                       |
| 26                 | Zr II                                                              | 354-09r                                                                       | 0.282665                                            | 0.000015                                                               | 0.000056                                           | 0.002238                    | 391                                                  | 0.282665                                          | 4.5                         | 0.5                    | 0.81                                      | 1.03                                       |
| 27                 | Zr II                                                              | $354-06r_2$                                                                   | 0.282591                                            | 0.000013                                                               | 0.000271                                           | 0.010854                    | 390                                                  | 0.282589                                          | 1.7                         | 0.5                    | 0.92                                      | 1.19                                       |
| -                  |                                                                    | Среднее                                                                       |                                                     |                                                                        |                                                    |                             |                                                      |                                                   | 5.9                         |                        | 0.77                                      | 0.95                                       |
| 28                 | Zr III                                                             | 354-22r                                                                       | 0.282777                                            | 0.000016                                                               | 0.000117                                           | 0.005017                    | 282                                                  | 0.282776                                          | 6.0                         | 0.6                    | 0.66                                      | 0.85                                       |
| 29                 | Zr III                                                             | 354-05r                                                                       | 0.282782                                            | 0.000010                                                               | 0.000033                                           | 0.001361                    | 276                                                  | 0.282782                                          | 6.0                         | 0.4                    | 0.65                                      | 0.85                                       |
| 30                 | Zr III                                                             | $354-05r_{2}$                                                                 | 0.282763                                            | 0.000023                                                               | 0.000056                                           | 0.002302                    | 276                                                  | 0.282763                                          | 5.3                         | 0.8                    | 0.68                                      | 0.88                                       |
| 31                 | Zr III                                                             | 354-22                                                                        | 0.282650                                            | 0.000015                                                               | 0.000112                                           | 0.005070                    | 328                                                  | 0.282649                                          | 2.5                         | 0.5                    | 0.83                                      | 1.10                                       |
| 32                 | Zr III                                                             | 354-20r                                                                       | 0.282584                                            | 0.000013                                                               | 0.000106                                           | 0.004374                    | 347                                                  | 0.282583                                          | 0.6                         | 0.5                    | 0.92                                      | 1.22                                       |
|                    |                                                                    | Среднее                                                                       |                                                     |                                                                        |                                                    |                             |                                                      |                                                   | 4.1                         |                        | 0.75                                      | 0.98                                       |
|                    |                                                                    |                                                                               |                                                     | Булдымский                                                             | і карбонатит-                                      | -ультрабазит                | овый комплек                                         | •                                                 |                             |                        |                                           |                                            |
| 0                  | бр. К-103, бефог                                                   | эсит, Булдыма                                                                 | ский массив                                         |                                                                        |                                                    |                             |                                                      |                                                   |                             |                        |                                           |                                            |
| 41                 | Zr III                                                             | K103-11                                                                       | 0.282522                                            | 0.000014                                                               | 0.000496                                           | 0.021236                    | 278                                                  | 0.282520                                          | -3.0                        | 0.5                    | 1.02                                      | 1.49                                       |
| 42                 | Zr III                                                             | K103-10                                                                       | 0.282589                                            | 0.000011                                                               | 0.000282                                           | 0.011842                    | 273                                                  | 0.282588                                          | -0.6                        | 0.4                    | 0.92                                      | 1.34                                       |
| 43                 | Zr III                                                             | K103-02                                                                       | 0.282593                                            | 0.000018                                                               | 0.000488                                           | 0.021415                    | 272                                                  | 0.282591                                          | -0.5                        | 0.6                    | 0.92                                      | 1.33                                       |
| 44                 | Zr III                                                             | K103-03                                                                       | 0.282587                                            | 0.000020                                                               | 0.000251                                           | 0.010437                    | 269                                                  | 0.282586                                          | -0.7                        | 0.7                    | 0.92                                      | 1.34                                       |
| 45                 | Zr III                                                             | K103-13                                                                       | 0.282589                                            | 0.000022                                                               | 0.000371                                           | 0.015979                    | 269                                                  | 0.282587                                          | -0.7                        | 0.8                    | 0.92                                      | 1.34                                       |
| 46                 | Zr III                                                             | K103-12                                                                       | 0.282601                                            | 0.000012                                                               | 0.000438                                           | 0.017811                    | 268                                                  | 0.282599                                          | -0.2                        | 0.4                    | 0.91                                      | 1.31                                       |
| 47                 | Zr III                                                             | K103-15                                                                       | 0.282557                                            | 0.000015                                                               | 0.000353                                           | 0.014215                    | 261                                                  | 0.282555                                          | -1.8                        | 0.5                    | 0.97                                      | 1.41                                       |
|                    |                                                                    | Среднее                                                                       |                                                     |                                                                        |                                                    |                             |                                                      |                                                   | -1.1                        |                        | 0.94                                      | 1.36                                       |
| *[Недс<br>Приме    | осекова и др., 2016<br>чание. Погрешнос                            | ].<br>ги значений дл.                                                         | R <sup>176</sup> Hf/ <sup>177</sup> Hf oth          | ошения ± 0.000                                                         | 02(2σ), что экви                                   | валентно $\pm 0.7$          | ɛHf, основано на (<br>11 т — молении                 | стандарте циркона                                 | a Nº 91500. 7               | Для вычи<br>           | сления пе                                 | рвичных                                    |
| MBI N3,<br>TaJIbHO | деплетированной м<br>й коры ( <sup>176</sup> Lu/ <sup>177</sup> Hf | а сил прилати<br>мантии ( <sup>176</sup> Lu/ <sup>17</sup><br>= 0.015), котор | $^{7}$ Нf = 0.038), $T_{\rm D}$<br>рая была ранее ( | ла изотото и полотоки.<br><sub>MC</sub> – модельный<br>образована из д | возраст источн<br>возраст источн<br>еплетированной | ика по двухста<br>й мантии. | и 1. т рм – модели, о<br>дийной модели, о            | снованной на вып                                  | лима, основа<br>главлении м | annun na<br>(armu n3 ( | редней ко                                 | онтинен-                                   |

ВОЗРАСТНЫЕ И Lu-Hf-ИЗОТОПНО-ГЕОХИМИЧЕСКИЕ ХАРАКТЕРИСТИКИ

ЕЖЕГОДНИК-2017, Тр. ИГГ УрО РАН, вып. 165, 2018



**Рис. 1.** Время формирования модельных источников, этапы магмогенерации и эволюции редкометалльных карбонатитовых комплексов Урала (на основе Lu-Hf-изотопии).

Мантийные резервуары: DM (деплетированная мантия) и CHUR (хондритовый резервуар).

T<sub>DM</sub> – время формирования субстрата из деплетированной мантии, T<sub>DMC</sub> – время формирования субстрата по двустадийной модели магмогенерации из корового источника, T<sub>1</sub> – время генерации щелочно-карбонатитовых магм и редкометалльного (Nb-Zr-REE) рудообразования на палеозойском этапе активизации, T<sub>2</sub> – метаморфические преобразования пород и руд карбонатитовых комплексов на этапе уральской коллизии.

растания на ранних генерациях, а также самостоятельные кристаллы в пегматоидных разностях миаскитов, миаскит-пегматитах, а также в поздних карбонатитах, показывают єНf от +0.6 до +6.0 (среднее +4.1) и демонстрируют незначительное снижение єНf относительно цирконов ранних генераций (I и II). Однако начальные отношения изотопов Hf (<sup>176</sup>Hf/<sup>177</sup>Hf)i в ранних (Zr I, Zr II) и поздних (Zr III) генерациях цирконов близки и практически соответствуют трендам радиогенных потерь Pb. Это свидетельствует в пользу того, что поздние генерации были сформированы при рекристаллизации раннего циркона без существенного привноса редких элементов (в частности REE и Hf) на коллизионном этапе (~ 280–250 млн лет) становления ИВК.

Таким образом, Hf изотопные данные, полученные для цирконов ИВК, показывают явный ювенильный компонент и свидетельствуют о том, что субстратом плавления для магм ИВК был деплетированный источник вещества. При этом значительные вариации ( $^{176}$ Hf/ $^{177}$ Hf)<sub>i</sub> в этих цирконах, а также снижение соотношения ( $^{176}$ Hf/ $^{177}$ Hf)<sub>i</sub> от ранних (I) к поздним (II) карбонатитовым цирконам, формирующимся на различных стадиях эволюции щелочно-карбонатитовой магмы (см. табл. 1), свидетельствует о многостадийном процессе их формирования с участием новых порций расплавов с различным изотопным составом, вероятно, образующих-ся при смешении в источнике плавления, и предполагают существование смешения с менее радиогенным, возможным коровым компонентом.

Цирконы доломитовых карбонатитов (бефорситов) Булдымского карбонатит-ультрабазитового комплекса (с U-Pb возрастом 278–261 млн лет) [Недосекова и др., 2014] имеют первичные отношения изотопов Hf ( $^{176}$ Hf/ $^{177}$ Hf $_{270}$  = 0.282525–0.282591,

ЕЖЕГОДНИК-2017, Тр. ИГГ УрО РАН, вып. 165, 2018

єHf = -0.2...-3.0), близкие хондритовым, отличаясь от цирконов Ильмено-Вишневогорского миаскиткарбонатитового комплекса более низкими значениями, что свидетельствует об участии различных источников в их формировании.

Для оценки возраста протолита исследованных комплексов были вычислены Lu-Hf модельные возраста Т<sub>DM</sub> и Т<sub>DMC</sub>. Для вычисления модельного возраста Т<sub>DM</sub>, основанного на выплавлении пород из деплетированной мантии, мы приняли модель с (<sup>176</sup>Hf/<sup>177</sup>Hf); = 0.279718 в 4.56 млрд лет и  $^{176}$ Lu/<sup>177</sup>Hf = 0.0384, которая производит современные значения <sup>176</sup>Hf/<sup>177</sup>Hf = 0.28325, близкие средним значениям MORB. Так как вычисление T<sub>DM</sub> может дать только минимальный возраст для источника магмы, из которой кристаллизовался циркон, был вычислен также двухстадийный модельный возраст Т<sub>DMC</sub>, который предполагает выплавление родительской магмы из средней континентальной коры, ранее образованной из деплетированной мантии ( $^{176}Lu/^{177}Hf = 0.015$ ; Geochemical Earth Reference Model database, http://www.earthref.org). Результаты расчетов Lu-Hf модельных возрастов T<sub>DM</sub> и T<sub>DMC</sub> приведены в табл. 1 и на рис. 1.

Следует отметить, что все популяции цирконов из карбонатитов ИВК (Zr I, Zr II, Zr III) имеют близкие значения Lu-Hf модельных возрастов, т. е.  $T_{DM}$  0.58–0.84, 0.70–0.92, 0.65–0.92 млрд лет соответственно; при этом среднее для каждой популяции цирконов практически одинаково – 0.75, 0.77, 0.75 млрд лет соответственно. Цирконы миаскитов ИВК демонстрируют аналогичные вариации значений  $T_{DM}$  (0.57–0.82 Ga, среднее 0.7 Ga). При этом более древний возраст протолита по сравнению с миаскитами имеют пегматоидные миаскиты ( $T_{DM}$  0.77 и 0.78 млрд лет) и миаскит-пегматиты ( $T_{DM}$  0.88 и 0.85 млрд лет), что подразумевает вклад более древнего источника позднепротерозойского возраста.

В соответствии с двухэтапной эволюционной моделью изотопного состава Hf, предполагающей выплавление материнской магмы из континентальной коры, ранее образовавшейся из обедненной мантии, средний возраст протолита карбонатитов ИВК  $T_{DMC}$  0.91, 0.95 и 0.98 млрд лет, соответственно для популяций циркона I, II, III, также соответствует позднепротерозойскому времени (Rf<sub>3</sub>). В то же время цирконы миаскитов демонстрируют более широкие вариации аналогичных значений (от 0.53 до 1.25 млрд лет), что позволяет предположить вклад более древнего корового протолита, генерируемого в позднем протерозое (Rf<sub>1-3</sub>).

Расчет Lu-Hf модельных возрастов относительно деплетированного мантийного резервуара дает оценку возраста субстрата Булдымского комплекса: по одностадийной модели – 0.91–1.02 млрд лет, по двустадийной модели –  $T_{DMC}$  1.30–1.49 млрд лет. Таким образом, протолит Булдымского ультрабазит-

карбонатитового комплекса отличается от субстрата магм ИВК миаскит-карбонатитового комплекса как возрастом ( $T_{DM}$  0.9–1.0 и 0.6–0.9 млрд лет соответственно), так и изотопным составом, отражающим долю деплетированного и обогащенного материала в мантийном источнике ( $\varepsilon Hf = -0.2...-3.0 - Булдым-ский комплекс и \varepsilon Hf$  от -0.2 до +11.8 - UBK).

Эти данные позволяют обсуждать две модели магмогенерации ИВК и Булдымского комплекса: 1) разновременное формирование субстрата Булдымского (1000-900 млн лет назад) и ИВК (900-600 млн лет назад) комплексов из различающихся изотопным составом мантийных источников, при этом являющимися исходно обедненным мантийным веществом (DM); 2) синхронное образование субстрата ИВК ( $T_{DMC} = 900-1250$  млн лет) и Бул-дымского ( $T_{DM} = 900-1000$  млн лет,  $T_{DMC} = 1300-$ 1490 млн лет) комплексов, предполагающее участие как мантийных, так и коровых источников вещества, что может быть связано с одновременной магмогенерацией на различных глубинах. Необходимо отметить, что время формирования субстрата Булдымского комплекса соответствует рифейским эпизодам континентального рифтогенеза (1450, 1385-1350 млн лет - машакское событие), фиксируемым в рифейских породах Башкирского антиклинория излияниями щелочных базальтов и рифтогенным магматизмом [Пучков, 2010].

#### выводы

В результате исследований Lu-Hf изотопных систем цирконов Ильмено-Вишневогорского и Булдымского карбонатитовых комплексов Урала установлено, что Булдымский ультрабазиткарбонатитовый комплекс имеет умеренно деплетированный характер субстрата плавления, отличающийся от субстрата магм ИВК миаскиткарбонатитового комплекса возрастом и изотопным составом (долей деплетированного и обогащенного материала в мантийном субстрате) (см. рис. 1). Так, для миаскит-карбонатитового комплекса (ИВК) модельный возраст субстрата, рассчитанный по одностадийной модели, предполагающей генерацию магм из деплетированной мантии, T<sub>DM</sub> = 600-900 млн лет, а для Булдымского ультрабазит-карбонатитового комплекса модельный возраст субстрата  $T_{\rm DM}\,{=}\,900{-}1000$  млн лет. Расчет модельного возраста субстрата по двухстадийной модели, предполагающей коровый источник магмогенерации (Т<sub>DMC</sub>), также показывает разницу в возрастах субстрата этих комплексов (T<sub>DMC</sub>= 900-1250 млн лет – ИВК миаскит-карбонатитовый комплекс, Т<sub>DMC</sub> = 1300–1490 млн лет – Булдымский комплекс). При этом необходимо отметить, что модельные возраста субстрата ИВК Т<sub>DMC</sub> (900-1250 млн лет) и Т<sub>DM</sub> Булдымского комплекса (900-1000 млн лет) практически совпадают.

Автор выражает глубокую признательность Е.А. Белоусовой и всем сотрудникам Национального Центра ССFS-GEMOC, Университета Макуори, г. Сидней, Австралия за сотрудничество, помощь и возможность проведения этих исследований.

Работа выполнена по проекту РФФИ № 17-05-00154.

### СПИСОК ЛИТЕРАТУРЫ

- Кононова В.А., Донцова Е.И., Кузнецова Л.Д. Изотопный состав кислорода и стронция Ильмено-Вишневогорского щелочного комплекса и вопросы генезиса миаскитов // Геохимия. 1979. № 12. С. 1784-1795.
- Крамм У., Чернышев И.В., Грауэрт Б., Кононова В.А., Брёкер В. Типология и U-Pb систематика цирконов: изучение цирконов в нефелиновых сиенитах Ильменских гор, Урал // Петрология. 1993. Т. 1, № 5. C. 536-549.
- Краснобаев А.А., Вализер П.М., Анфилогов В.Н., Немов А.Б., Бушарина С.В. Цирконология пегматитов Ильменских гор // Докл. РАН. 2014. Т. 457, № 4. C. 455.
- Краснобаев А.А., Вализер П.М., Русин А.И., Бушарина С.В., Медведева Е.В. Цирконология гипербазитов Булдымского массива (Ильмено-Вишневогорский комплекс, Южный Урал) // Докл. РАН. 2015. Т. 461, № 1. C. 63–69.
- Краснобаев А.А., Русин А.И., Бушарина С.В., Лепехина Е.Н., Медведева Е.В. Цирконология амфиболовых миаскитов Ильменогорского массива (Южный Урал) // Докл. РАН. 2010а. Т. 430, № 2. С. 227–231.
- Краснобаев А.А., Русин А.И., Вализер П.М., Бушарина С.В. Цирконология кальцитовых карбонатитов Вишневогорского Массива (Южный Урал) // Докл. РАН. 2010б. Т. 431, № 3. С. 1–4.
- Левин В.Я., Роненсон Б.М., Самков В.С. Щелочнокарбонатитовые комплексы Урала. Екатеринбург: Уралгеолком, 1997. 274 с.
- Недосекова И.Л. Новые данные по карбонатитам Ильмено-Вишневогорского комплекса (Ю. Урал, Россия) // Геология рудных месторождений. 2007. Т. 49, № 2. С. 146–164. *Недосекова И.Л.* Возраст и источники вещества
- Ильмено-Вишневогорского щелочного комплекса (Ю. Урал): геохимические и Rb-Sr, Sm-Nd, U-Pb и Lu-Hf изотопные данные // Литосфера. 2012. № 5. C. 77-95.
- Недосекова И.Л., Белоусова Е.А., Беляцкий Б.В. U-Pb возраст и Lu-Hf изотопные системы цирконов Ильмено-Вишневогорского щелочно-карбонатитового комплекса, Южный Урал // Литосфера. 2014. № 5. С. 19-32.
- Недосекова И.Л., Белоусова Е.А., Беляцкий Б.В. Изотопный состав гафния и редкие элементы как идентификаторы генезиса циркона при эволюции щелочнокарбонатитовой магматической системы (Ильмено-Вишневогорский комплекс, Урал, Россия) // Докл. РАН. 2015. Т. 461, № 5 С. 569–574. Недосекова И.Л., Белоусова Е.А., Шарыгин В.В. Источ-
- ники вещества Ильмено-Вишневогорского щелочно-

го комплекса по данным Lu-Hf-изотопии в цирконах // Докл. РАН. 2010. Т. 435, № 2. С. 234–239.

- Недосекова И.Л., Беляцкий Б.В. Возраст и источники вещества Ильмено-Вишневогорского щелочного комплекса (Ю. Урал): изотопные Rb-Sr, Sm-Nd, U-Pb и Lu-Нf данные // Докл. РАН. 2012. Т. 446, № 1. С. 71–76.
- Недосекова И.Л., Беляцкий Б.В., Белоусова Е.А. Редкие элементы и изотопный состав гафния как индикаторы генезиса циркона при эволюции щелочнокарбонатитовой магматической системы (Ильмено-Вишневогорский комплекс, Урал, Россия) // Геология и геофизика. 2016. Т. 57, № 6. С. 1135–1154.
- Недосекова И.Л., Владыкин Н.В., Прибавкин С.В., Бая-Ильмено-Вишневогорский миаскит-Т.Б. нова карбонатитовый комплекс: происхождение, рудоносность, источники вещества (Урал, Россия) // Геология рудных месторождений. 2009. Т. 51, № 2. С. 157–181.
- Петров Г.А., Жиганов А.А., Стефановский В.В., Шалагинов В.В., Петрова Т.А., Овчинников Р.А., Гертман Т.А. Государственная геологическая карта Российской Федерации. Масштаб 1 : 1 000 000. 3-е поколение. Уральская серия. Л. О-41 (Екатеринбург). Объяснительная записка / гл. науч. ред. А.В. Жданов. СПб.: ВСЕГЕИ, 2010.
- Прибавкин С.В., Недосекова И.Л. Источники вещества карбонатитов Ильмено-Вишневогорского комплекса по данным изотопии Sr, Nd в карбонатах // Докл. PAH. 2006. T. 408, № 3. C. 385–388.
- Пучков В.Н. Геология Урала и Приуралья (актуальные вопросы стратиграфии, тектоники, геодинамики и металлогении). Уфа: ДизайнПолиграфСервис, 2010. 280 c.
- Amelin Y., Lee D.C., Halliday A.N., Pidgeon R.T. Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons // Nature. 1999. No. 399 (6733). P. 252-255.
- Griffin W.L., Pearson N.J., Belousova E.A., Jackson S.E., van Achterbergh E., O'Reilly S.Y., Shee S.R. The Hf isotope composition of cratonic mantle: LA-MC-ICP MS analysis of zircon megacrysts in kimberlites // Geochim. Cosmochim. Acta. 2000. V. 64. P. 133-147.
- Kramm U., Chernyshev I.V., Grauert B., Kononova V.A., Bröcker W. Zircon typology and U-Pb systematics: a case study of zircons from nefeline syenite of the Il'meny Mountains, Urals // Petrology. 1993. V. 1, no. 5. P. 536-549.
- Nedosekova I.L., Belousova E.A., Sharygin V.V., Belyatsky B.V., Baynova T.B. Origin and evolution of the Il'meny-Vishnevogorsky carbonatites (Urals, Russia): insights from trace-elements compositions, Rb-Sr, Sm-Nd, U-Pb and Lu-Hf isotope data // Mineral. Petrol. 2013. V. 107. P. 101-123.
- Patchett P.J., Kouvo O., Hedge C.E., Tatsumoto M. Evolution of continental crust and mantle heterogeneity: evidence from Hf isotopes // Contrib. Mineral. Petrol. 1981. No. 78. P. 279-297.
- Schärer U., Corfu F., Demaiffe D. U-Pb and Lu-Hf isotopes in baddeleyite and zircon megacrysts from the Mbuji-Mayi kimberlite: constraints on the subcontinental mantle // Chem. Geol. 1997. No. 143 (1-2). P. 1-16.
- Scherer E., Münker C., Mezger K. Calibration of the lutetium-hafnium clock // Science. 2001. No. 293. P. 683–687.

ЕЖЕГОДНИК-2017, Тр. ИГГ УрО РАН, вып. 165, 2018