==== МИНЕРАЛОГИЯ =

ВЕЩЕСТВЕННЫЕ И ГЕНЕТИЧЕСКИЕ ОСОБЕННОСТИ ПЕРВИЧНОЙ МИНЕРАЛЬНОЙ ПЛАТИНОИДНОЙ АССОЦИАЦИИ ВЕРХ-НЕЙВИНСКОГО ДУНИТ-ГАРЦБУРГИТОВОГО МАССИВА (СРЕДНИЙ УРАЛ, РОССИЯ)

© 2018 г. И. Ю. Баданина, К. Н. Малич, В. В. Мурзин, В. В. Хиллер, С. М. Туганова*

Впервые охарактеризованы особенности химического и изотопного состава осмия Ru-Os сульфидов в составе первичной ассоциации минералов платиновой группы Верх-Нейвинского дунит-гарцбургитового массива – типичного представителя мантийной офиолитовой ассоциации Среднего Урала. Ru-Os сульфиды характеризуются двумя морфологическими типами – кристаллическими индивидами размером от 0.1 до 1.5 мм, образующими непрерывный ряд твердых растворов серии лаурит (RuS₂) – эрликманит (OsS₂), и идиоморфными минеральными включениями лаурита размером 30–80 мкм в Os-Ir-(Ru) сплавах. Оs-содержащие сплавы первичного парагенезиса образованы рутением, осмием и иридием. Составы минеральных включений в Ru-Os сульфидах и Os-содержащих сплавах свидетельствуют в пользу высокотемпературной природы образования изученных МПГ. Пониженные относительно хондритового резервуара значения ¹⁸⁷Os/¹⁸⁸Os в Ru-Os сульфидах первичного парагенезиса указывают на субхондритовый источник рудного вещества.

ВВЕДЕНИЕ

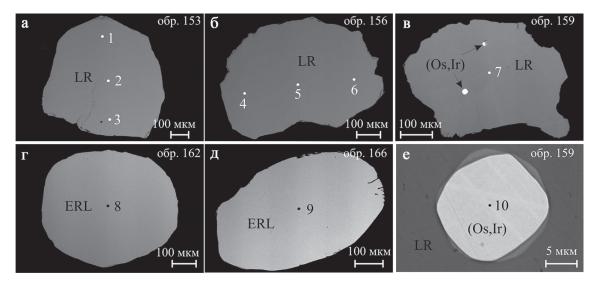
Для Верх-Нейвинского дунит-гарцбургитового массива, типичного представителя мантийной офиолитовой ассоциации Урала (Россия), установлено широкое развитие разновозрастных ассоциаций минералов платиновой группы (МПГ) в составе первичных и вторичных минеральных парагенезисов [Мурзин и др., 1999]. Характеристика их вещественного состава и физико-химические условия образования Ru-Os-Ir сплавов приведены в ряде работ [Мурзин и др., 1999; Мурзин, Суставов, 2000; Баданина и др., 2013, 2015]. В нашем исследовании обсуждаются результаты изучения химического состава Ru-Os сульфидов и сосуществующих Os-Ir-(Ru) сплавов первичного минерального парагенезиса Верх-Нейвинского массива. Информация о генетических особенностях образования данных МПГ приводится с учетом первых результатов по осмиевой изотопии Ru-Os сульфидов.

ОБРАЗЦЫ И АНАЛИТИЧЕКИЕ МЕТОДЫ

Верх-Нейвинский массив располагается на стыке Тагильского мегасинклинория и Восточно-Уральского поднятия в зоне Серовско-Маукского глубинного разлома. В его строении участвуют два комплекса — дунит-гарцбургитовый $(O_3$ - $S_1)$, слагающий внутренние части массива, и плагиогранит-диорит-габбровый $(S_2$ - $D_2)$, находящийся на периферии [Мурзин и др., 1999]. В пределах массива

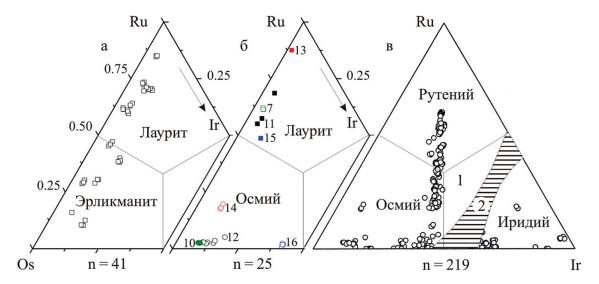
выявлено 68 проявлений и мелких месторождений хромититовых руд, локализованных в породах обоих комплексов [Мурзин и др., 1999, рис. 1]. Основные проявления благородных металлов — самородного золота и МПГ — связаны с россыпными отложениями современных и древних речных долин. Представительная выборка, состоящая из 585 зерен МПГ размером от 0.1 до 3 мм, отобрана из четвертичных отложений р. Восточный Шишим в южной части Верх-Нейвинского массива.

Для исследования химического состава Ru-Os сульфидов и минеральных включений был использован рентгеноспектральный микроанализ (CAMECA SX 100 с пятью волновыми спектрометрами, ИГГ УрО РАН, г. Екатеринбург). Всего выполнено около 550 анализов. Начальный Osизотопный состав Ru-Os сульфидов был определен с помощью термоионизационной массспектрометрии в отрицательных ионах (negative thermal ionization mass spectrometry, N-TIMS [Creaser et al., 1991]) на многоколлекторном массспектрометре ThermoFisher Triton Plus в Департаменте геологии Государственного университета штата Мэрилэнд, США. Детальная характеристика аналитических методов приведена в ряде работ [Баданина и др., 2013; Puchtel et al., 2016].


РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

МПГ первичной ассоциации Верх-Нейвинского массива образованы преимущественно субидио-

^{*} Всероссийский научно-исследовательский геологический институт, г. Санкт-Петербург


морфными и идиоморфными кристаллами, а также агрегатами кристаллов, среди которых Ru-Os-Ir сплавы (85.5%) преобладают над Ru-Os сульфидами и Pt-Fe сплавами (15.3 и 1.2% соответственно [Баданина и др., 2013]). Ru-Os сульфиды представлены двумя морфологическими типами. Первый характеризуется кристаллическими индивидами размером от 0.1 до 1.5 мм (рис. 1а–д). По составу они соответствуют лауриту и эрликманиту, образующим непрерывный ряд твердых растворов

(рис. 2а, табл. 1, Ru # варьирует от 11 до 89). Кроме Ru, Os и S, данные минералы имеют значимую концентрацию Ir (3.32–10.38 мас. %) и незначительное содержание Fe, Ni и Rh, которые варьируют в пределах 0.17–0.40, 0.00–0.23 и 0.01–0.39 мас. % соответственно. Для Ru-Os сульфидов характерны минеральные включения высокомагнезиального оливина ($Fo_{92–94}$) размером от 5 до 40 мкм (табл. 1, ан. 2–9 [Баданина и др., 2013]) и иридий-содержащего осмия (Os,Ir) – до 30 мкм (см. рис. 1в, е; 26; табл. 2, ан. 10).

Рис. 1. Особенности внутреннего строения Ru-Os сульфидов первого морфологического типа в составе первичного парагенезиса МПГ Верх-Нейвинского массива.

Изображения в обратно-рассеянных электронах с вещественным контрастом: a – обр. 153, 6 – обр. 156, 8 – обр. 159, r – обр. 162, q – обр. 166, e – деталь рис. 1в. LR – лаурит, ERL – эрликманит, (Os, Ir) – Ir-содержащий осмий. Цифры 1–10 – точки рентгеноспектральных микроанализов, соответствующие таковым в табл. 1.

Рис. 2. Химические составы Ru-Os сульфидов первого морфологического типа (а), сосуществующих лаурита второго морфологического типа и минералов осмия в составе первичного парагенезиса МПГ (б), Ru-Os-Ir сплавов первичного платиноидного парагенезиса Верх-Нейвинского массива в координатах Ru-Os-Ir, ат. % (в).

На рис. б цифры 7, 10–16 у квадратов и кругов соответствуют порядковым номерам химических анализов в табл. 1, 2; на рис. в: 1 – рутениридосмин, 2 – область несмесимости [Harris, Cabri, 1991].

Таблица 1. Представительные химические составы Ru-Os сульфидов первого морфологического типа Верх-Нейвинского массива

Анализ	1	2	3	4	5	6	7	8	9
Обр.	153	153	153	156	156	156	159	162	166
Минерал	Лаурит						ERL	ERL	
Рис.	1a	1a	1a	16	16	16	1в	1г	1д
мас. %									
Fe	<∏. o.	<∏. o.	0.17	0.38	0.40	0.32	<∏. o.	<∏. o.	<∏. o.
Ni	<∏. o.	<∏. o.	<∏. o.	0.23	<∏. o.				
Cu	<∏. o.								
Ru	37.24	36.52	37.10	39.20	38.08	38.89	31.69	12.74	21.48
Rh	0.27	0.39	0.27	0.26	0.25	0.29	0.04	0.11	0.01
Pd	<∏. o.								
Os	19.16	19.08	19.58	20.79	21.34	21.53	33.04	51.23	42.41
Ir	10.38	10.71	9.48	5.96	6.10	5.52	3.32	7.81	5.87
Pt	<∏. o.								
S	33.24	33.08	33.81	33.87	33.80	33.42	32.13	28.17	29.63
As	<∏. o.								
Сумма	100.29	99.78	100.41	100.69	99.97	99.97	100.22	100.06	99.40
ат. %									
Fe	_	_	0.19	0.43	0.45	0.36	_	_	_
Ni	_	_	_	_	0.25	_	_	_	_
Cu		_	_	_	_	_	_	_	_
Ru	23.57	23.27	23.24	24.27	23.78	24.39	20.80	9.58	15.29
Rh	0.17	0.25	0.16	0.16	0.15	0.18	0.03	0.08	0.01
Pd	_	_	_	-	_	_	_	_	_
Os	6.45	6.46	6.52	6.84	7.08	7.18	11.53	20.47	16.04
Ir	3.46	3.59	3.12	1.94	2.00	1.82	1.15	3.09	2.20
Pt	_	-	_	_	-	_	_	_	_
S	66.35	66.44	66.77	66.11	66.54	66.07	66.49	66.78	66.46
As	_	_	_	_	-	-	_	_	-
Ru#	78	78	78	78	77	77	77	64	32

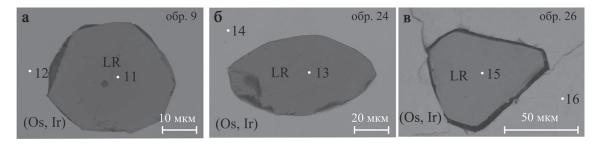
Примечание. ERL — эрликманит, Ru# = $100 \times$ Ru ат. % /(Ru + Os) ат. % . <П. о. — ниже предела обнаружения; для Ru-Os сульфидов пределы обнаружения здесь и в табл. 2 составили (мас. %): Os — 0.15, Ir — 0.75, Ru — 0.24, Rh — 0.01, Pt — 0.09, Pd — 0.27, Fe — 0.15, Ni — 18.00, Cu — 0.15, S — 0.13, As — 0.01.

Таблица 2. Представительные химические составы сосуществующих Ru-Os сульфидов второго морфологического типа и Os-Ir сплавов первичного парагенезиса Верх-Нейвинского массива

		1					
Анализ	10	11	12	13	14	15	16
Обр.	159	9	9	24	24	26	26
Минерал	(Os, Ir)	Лаурит	(Os, Ir)	Лаурит	(Os, Ir)	Лаурит	(Os, Ir)
Рис.	1e	3a	3a	36	36	3в	3в
мас. %							
Fe	<∏. o.	<∏. o.	<∏. o.	<∏. o.	<∏. o.	0.27	0.22
Ni	<∏. o.	<∏. o.	<∏. o.	<∏. o.	<∏. o.	<∏. o.	<∏. o.
Cu	<∏. o.	<∏. o.	<∏. o.	<∏. o.	<∏. o.	<∏. o.	<∏. o.
Ru	1.26	26.98	1.34	49.56	11.44	22.81	0.95
Rh	<∏. o.	<∏. o.	<∏. o.	0.25	0.15	0.12	<∏. o.
Pd	<∏. o.	<∏. o.	<∏. o.	<∏. o.	<∏. o.	<∏. o.	<∏. o.
Os	89.13	36.92	83.82	11.44	77.51	36.99	57.26
Ir	9.38	4.54	14.66	1.83	10.49	8.28	41.55
Pt	<∏. o.	<∏. o.	<∏. o.	<∏. o.	<∏. o.	<∏. o.	<∏. o.
S	0	31.34	<∏. o.	36.95	<∏. o.	31.30	<∏. o.
As	<∏. o.	<∏. o.	<∏. o.	<∏. o.	<∏. o.	<∏. o.	<∏. o.
Сумма	99.77	99.78	99.82	100.03	99.59	99.77	99.98

Анализ	10	11	12	13	14	15	16
Обр.	159	9	9	24	24	26	26
Минерал	(Os, Ir)	Лаурит	(Os, Ir)	Лаурит	(Os, Ir)	Лаурит	(Os, Ir)
Рис.	1e	3a	3a	36	3б	3в	3в
ат. %							
Fe	_	_	_	_	_	0.33	0.74
Ni	_	_	_	_	_	_	_
Cu	-	_	_	_	_	_	_
Ru	2.35	18.26	2.50	28.59	19.62	15.61	1.77
Rh	_	_	_	0.14	0.26	0.08	_
Pd	_	_	_	_	_	_	_
Os	88.44	13.28	83.12	3.51	70.66	13.45	56.75
Ir	9.21	1.62	14.38	0.56	9.46	2.98	40.74
Pt	_	_	_	_	_	_	_
S	_	66.84	_	67.20	_	67.55	_
As	_	_	_	_	_	_	_
P11 #		56		80		5.1	

Таблица 2. Окончание


Примечание. (Os, Ir) – Ir-содержащий осмий. $Ru\# = 100 \times Ru$ ат. %/(Ru + Os) ат. % . $<\Pi$. о. – ниже предела обнаружения; для Ir-содержащего осмия пределы обнаружения составили, мас. %: Os – 0.18, Ir – 0.85, Ru – 0.27, Rh – 0.11, Pt – 0.99, Pd – 0.30, Fe – 0.16, Ni – 0.18, Cu – 0.15, S – 0.06, As – 0.03.

Начальный Оѕ-изотопный состав Ru-Oѕ сульфидов первого морфологического типа характеризуется значением 187 Oѕ/ 188 Oѕ = 0.12341 при величине $^{\gamma}$ Oѕ(440 млн лет) = $^{-0}$.5.

Ru-Os сульфиды второго морфологического типа образованы идиоморфными минеральными включениями размером 30–80 мкм в Os-Ir-(Ru) сплавах (рис. 3а–в). При сравнении с Ru-Os сульфидами первого морфологического типа они характеризуются более рутениевым составом (см. рис. 26, Ru # 54–89, табл. 2, ан. 11, 13, 15), который соответствует лауриту, имеющим незначительную концентрацию Rh (0.12–0.25 мас. %) и Fe (до 0.27 мас. %). Ru-Os-Ir сплавы в составе первичного парагенезиса представлены самородным осмием, рутением и иридием (см. рис. 26, в). Изменчивость состава гексагональных минералов осмия и рутения обусловлена замещением в твердом растворе осмия иридием (тренд составов вдоль горизонтальной оси Os-Ir на рис. 2в)

или рутением (вертикальный тренд составов в сторону Ru на рис. 2в).

Согласно данным Д. Бэрда и В. Бассета [Bird, Bassett, 1980] наличие рутениевого тренда химических составов твердых растворов тугоплавких ЭПГ на тройной диаграмме Ru-Os-Ir (см. рис. 2в) свидетельствует о высокобарических условиях образования данных минералов. Высокотемпературное образование Ru-Os сульфидов было подтверждено экспериментально [Andrews, Brenan, 2002]. Соотношения фаз равновесия Оs-содержащих сплавов, основанные на бинарных диаграммах Os-Ir, Os-Ru [Binary Alloy Phase Diagrams, 1993], и состав высокомагнезиального оливина (Fo₉₂₋₉₄), характерного минерала мантийных ультрамафитов, в Ru-Os сульфидах и Os-содержащих сплавах [Баданина и др., 2013] также свидетельствуют в пользу высокотемпературной природы образования данных МПГ.

Рис. 3. Особенности морфологии включений лаурита (LR) второго морфологического типа в Ir-содержащем осмии (Os, Ir).

Изображения в обратнорассеянных электронах с вещественным контрастом. Цифры 11-16 – точки рентгеноспектральных микроанализов, соответствующие таковым в табл. 2.

ЗАКЛЮЧЕНИЕ

Для минералого-геохимического исследования Ru-Os сульфидов и сосуществующих Os-Ir-(Ru) сплавов первичного минерального парагенезиса Верх-Нейвинского дунит-гарцбургитового массива на Среднем Урале был использован комплекс методов, включающий рентгеноспектральный микроанализ и термоионизационную массспектрометрию в отрицательных ионах. Ru-Os сульфиды образуют непрерывный ряд твердых растворов серии лаурит-эрликманит; сплавы системы Ru-Os-Ir представлены рутением, осмием и иридием. Состав минеральных включений в Ru-Os сульфидах и Os-содержащих сплавах первичного парагенезиса свидетельствует в пользу высокотемпературной природы их образования. Пониженные относительно хондритового резервуара (CHUR = 0.12863 ± 0.00046 [Chen et al., 1998]) значения ¹⁸⁷Os/¹⁸⁸Os в Ru-Os сульфидах первичного парагенезиса указывают на субхондритовый источник рудного вещества.

Авторы благодарны И.С. Пухтелю за помощь в выполнении Os-изотопных анализов.

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 18-05-00988 и частично — при поддержке УрО РАН (проект № 18-5-5-41).

СПИСОК ЛИТЕРАТУРЫ

Баданина И.Ю., Жаркова Е.В., Кадик А.А., Малич К.Н., Мурзин В.В. Результаты экспериментального определения собственной летучести кислорода Ru-Os-Ir сплавов Верх-Нейвинского дунит-гарцбургитового массива, Средний Урал (Россия) // Геохимия. 2015. Т. 53, № 7. С. 661–666.

- Баданина И.Ю., Малич К.Н., Мурзин В.В., Хиллер В.В., Главатских С.П. Минералого-геохимические особенности платиноидной минерализации Верх-Нейвинского дунит-гарцбургитового массива (Средний Урал, Россия) // Тр. ИГГ УрО РАН. Екатеринбург: ИГГ УрО РАН, 2013. Вып. 160. С. 188–192.
- Мурзин В.В., Суставов С.Г. Новые данные о минералах ряда лаурит—эрликманит и их мышьяковистых разновидностей // Докл. РАН. 2000. Т. 370, № 3. С. 380—382.
- Мурзин В.В., Суставов С.Г., Мамин Н.А. Золотая и платиноидная минерализация россыпей Верх-Нейвинского массива альпинотипных гипербазитов (Средний Урал). Екатеринбург: УГГГА, 1999. 93 с.
- Andrews D.R.A., Brenan J.M. Phase-equilibrium constraints on the magmatic origin of laurite and Os-Ir alloy // Canad. Mineralog. 2002. V. 40. P. 1705–1716.
- Binary Alloy Phase Diagrams / ed. by T.B. Massalski, J.L. Murray, L.H. Bennett, H. Baker. Ohio: Amer. Soc. Metals, Metals Park, 1993. 2224 p.
- Bird J.M., Bassett W.A. Evidence of a deep mantle history in terrestrial osmium-iridium-ruthenium alloys // Geophys. Res. 1980. V. 85. P. 5461–5470.
- Chen J.H., Papanastassiou D.A., Wasserburg G.J. Re-Os systematics in chondrites and the fractionation of the platinum group elements in the early solar system // Geochim. Cosmochim. Acta. 1998. V. 62, no. 19–20. P. 3379–3392.
- Creaser R.A., Papanastassiou D.A., Wasserburg G.J. Negative thermal ion mass-spectrometry of osmium, rhenium, and iridium // Geochim. Cosmochim. Acta. 1991. V. 55. P. 397–401.
- Harris D.C., Cabri L.J. Nomenclature of platinum-groupelement alloys: review and revision // Canad. Mineralog. 1991. V. 29. P. 231–237.
- Puchtel I.S., Touboul M., Blichert-Toft J., Walker R.J., Brandon A.D., Nicklas R.W., Kulikov V.S., Samsonov A.V.
 Lithophile and siderophile element systematics of Earth's mantle at the Archean-Proterozoic boundary: Evidence from 2.4 Ga komatiites // Geochim. Cosmochim. Acta. 2016. V. 180. P. 227–255.