— МИНЕРАЛОГИЯ =

МИНЕРАЛЫ ПЛАТИНОВОЙ ГРУППЫ РОССЫПИ р. ГЛИНКА (МУРЗИНСКИЙ ГРАНИТОГНЕЙСОВЫЙ МАССИВ, СРЕДНИЙ УРАЛ)

© 2018 г. В. В. Мурзин, А. Ю. Кисин, И. Ю. Баданина, К. Н. Малич

Изучены минералы платиновой группы р. Глинка, дренирующей породы восточной части Мурзинско-Адуйского гранитогнейсового метаморфического комплекса вблизи его контакта с Алапаевским ультраосновным массивом. Платиноиды р. Глинка представлены Os, Ir и Ru, а также Pt-Fe минералами. Ru-Os-Ir минералы отнесены к первичным, а вариации их состава описываются осмий-рутениевым и иридиевым трендами, известными, кроме того, в россыпи Алабашского лога в западной части Мурзинско-Адуйского комплекса, а также хромититах Ключевского массива. Вариации состава Ru-Os-Ir минералов западных массивов Среднего Урала в зоне Серовско-Маукского разлома отвечают иридиевому и рутениевому трендам. Латеральная изменчивость химического состава Ru-Os-Ir минералов на Среднем Урале, вероятно, отражает различную природу ультраосновных пород, в частности хромититов, вмещающих платиноидную минерализацию.

ВВЕДЕНИЕ

Дунит-гарцбургитовые массивы и связанные с ними хромитовые и платиноидные типы оруденения локализуются на Среднем Урале в нескольких зонах субмеридионального простирания. На западе Среднего Урала дунит-гарцбургитовые массивы (Восточно-Тагильский, Верх-Нейвинский и др.) приурочены к зоне Серовско-Маукского разлома. К востоку от последнего находится ряд крупных массивов (Первомайский, Ключевской, Алапаевский, Режевской, Баженовский и др.) в пределах которых известны небольшие месторождения и проявления хромититов. Эти ультраосновные массивы дренируются крупными водотоками (реками Нейва, Реж и др.) и их многочисленными притоками, сопровождающимися золотоносными россыпями. В литературе прошлого века [Рожков, 1948] есть упоминание о том, что в некоторых россыпях помимо золота присутствовала "платина и осмистый иридий" – до 5-6% от количества золота. Особенности морфологии и состава минералов платиновой группы (МПГ) и хромшпинелидов одной из таких россыпей = рубиноносной россыпи Алабашского лога – были изучены нами ранее [Мурзин и др., 2015].

Объектом настоящего исследования стали зерна МПГ из отвала экскаваторной выемки глубиной около 2 м, вскрывшей аллювиальные отложения в долине р. Глинка, являющейся одним из левых притоков р. Сусанка, впадающей в свою очередь в р. Нейва. Координаты точки отбора пробы: 57°47'11.91" N, 61°13'23.74" Е. Верховья р. Глинка находятся в зоне западного контакта Алапаевского массива. Ниже по течению она поворачивает на юго-запад, где рассекает метаморфические породы Мурзинско-Адуйского комплекса с небольшими телами оталькованных серпентинитов (рис. 1). К одному из тел серпентинитов приурочено Глинское проявление изумрудов и александритов в слюдитах.

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЙ

Тяжелая фракция пробы объемом 40 л отобрана в русле р. Глинка и представлена зернами магнетита, хромшпинелида, ильменита, граната, амфибола, циркона, корунда, монацита, а также самородного золота и МПГ. Шлиховые МПГ изучены нами в ЦКП "Геоаналитик" ИГГ УрО РАН методами сканирующей электронной микроскопии (Jeol-JSM-6390LV, аналитик И.А. Готтман) и рентгеноспектрального микроанализа (Cameca SX100, аналитик Д.А. Замятин). Количественный анализ минералов выполнен при ускоряющем напряжении 15 кВ, силе тока пучка электронов 20 нА. Использованы следующие аналитические линии и стандартные образцы: Ru L_a, Rh L_a, Pd L_b, Os M_a, Ir L_a, Pt L_{α} , Ni K_{α} (все чистые металлы), Те L_{α} (теллурид ртути), Fe K_a, Cu K_a, S K_a (халькопирит), As L_a (арсенид индия).

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

Минералы платиновой группы имеют размеры, не превышающие 0.5 мм, и представлены зернами Os-Ir-Ru и Pt-Fe состава. Для Os-Ir-Ru минералов характерна слабая окатанность. Они сохраняют кристаллический облик и микроскульптуру поверхности, на которой видны отпечатки срастающихся с ними минералов и ступенек роста (рис. 2а–в). Зерна Fe-Pt минералов окатаны, микроскульптура их поверхности несет следы механических деформаций, сохраняются только грубые ростовые элементы (рис. 2г-е).

Рис. 1. Схематическая геологическая карта западного обрамления Алапаевского массива.

1 – четвертичные отложения; 2 – мраморы, силикатные мраморы; 3 – гнейсы амфиболовые; 4 – сланцы кремнистые, углисто-кремнистые, кварциты, зеленые сланцы; 5 – гнейсы биотитовые; 6 – гранитогнейсы; 7 – граниты биотитовые, мусковитовые, двуслюдяные; 8 – гранодиориты; 9 – талькиты; 10 – серпентинизированные ультрабазиты, в том числе западного контакта Алапаевского массива (A); 11 – места отбора проб в Алабашском логу (I) и р. Глинка (II).

Химический состав Os-Ir-Ru минералов приведен в табл. 1. Согласно номенклатуре [Harris, Cabri, 1991] они принадлежат самородным осмию, иридию и рутению. Основные примесные компоненты Os-Ir-Ru сплавов – Pt (до 3.2 мас. %) и Rh (до 1.4 мас. %). Включений других минералов, за исключением редких мелких (размером не более 10–15 мкм) включений лаурита RuS₂ (см. табл. 1, ан. sh8-14-28), в них не обнаружено.

По химическому составу большая часть изученных нами зерен Pt-Fe минералов соответствует составу, близкому к стехиометрии изоферроплатины Pt₃Fe, где Pt – сумма элементов платиновой групны (ЭПГ), Fe – сумма Fe, Cu, Ni (табл. 2). Отдельные зерна Pt-Fe минералов (см. табл. 2, ан. sh8-7-19, sh8-13-25) по стехиометрии близки к Pt₂Fe и, вероятно, соответствуют железистой платине. Единичные зерна по составу приближаются к самородной платине (см. табл. 2, ан. sh8-11-23). В замет-

ных количествах в Pt-Fe минералах присутствуют примесные компоненты, мас. %: Cu – до 1.2, Ir – до 3.2, Rh – до 2.0, Pd – до 1.6, Os – до 0.3. В одном из зерен платины присутствуют мелкие (до 10 мкм) округлые включения сплава Pt-Fe с высоким содержанием иридия – 10.9 мас. % (см. табл. 2, ан. sh8-13-25).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЙ

До настоящего времени МПГ ультраосновных массивов, расположенных к востоку от массивов Серовско-Маукского и Главного уральского разломов, изучены очень слабо. Весьма ограниченные сведения о химическом составе МПГ можно найти лишь для хромититов Алапаевского [Zaccarini et al., 2016] и Ключевского [Пушкарев, 2006; Zaccarini et al., 2008] массивов. В Алапаевском массиве вклю-

Рис. 2. Морфология типичных зерен Os-Ir-Ru (а-в) и Pt-Fe (с-е) минералов.

Снимки выполнены на электронном микроскопе в режиме обратнорассеянных электронов. Другие пояснения см. в тексте.

чения МПГ размером 1–10 мкм приурочены к хромититам и представлены лауритом (RuS₂), в меньшей степени купроиридситом (CuIr₂S₄) и сплавами системы Os-Ir-Ru (химический состав минералов Os-Ir-Ru не приводится). Лаурит и купроиридсит классифицируются названными авторами как первичные минералы, а Os-Ir-Ru минералы – как вторичные, образующиеся в процессе серпентинизации. В Ключевском массиве включения МПГ (размером менее 40 мкм) в хромшпинелиде принадлежат Os-Ir-Ru ассоциации и представлены преимущественно лауритом, самородными осмием и рутением, а также эпигенетическими сульфидами, арсенидами и сульфоарсенидами (эрликманитом, купроиридситом, рутенарсенитом, ирарситом и др.).

В изученных нами ранее россыпях Алабашского лога [Мурзин и др., 2015] и р. Глинка присутствуют минералы как Ru-Os-Ir ассоциации, так и Pt-Fe. Установлено, что в отличие от массивов зоны Серовско-Маукского разлома, где вариации Ru-Os-Ir минералов состава описываются иридиевым и рутениевым трендами [Мурзин и др., 1999; Некрасова, Азовскова, 2010; Баданина и др., 2013], в россыпи Алабашского лога иридиевый тренд сочетается с ранее не выделявшимся на Урале осмийрутениевым трендом. В поле составов последнего находятся и точки анализов Ru-Os-Ir минералов россыпи р. Глинка, а также хромититов Ключевского массива (рис. 3). Некоторые различия в составе МПГ в дунит-гарцбургитовых массивах зоны Серовско-Маукского разлома и более восточных массивах устанавливаются и по минералам Pt-Fe ассоциации. Кубические Pt-Fe сплавы первичного парагенезиса, близкие по составу к изоферроплатине Pt₃Fe, доминируют во всех массивах. Тетрагональные сплавы вторичного парагенезиса – тетраферроплатина PtFe, туламинит (Pt₂FeCu), ферроникельплатина (Pt₂FeNi) – установлены только в россыпях массивов Серовско-Маукского разлома, наиболее представительно в Верх-Нейвинском массиве.

В мировой литературе многие исследователи придерживаются мнения, что Ru-Os-Ir спла-

№ обрзерна-спектра	Os	Ir	Ru	Pt	Rh	Fe	S	Сумма
sh8-4-15	52.38	22.24	21.54	3.18	0.21	0.00	0.00	99.55
sh8-8-20	25.97	43.70	25.19	3.04	1.36	0.64	0.00	99.90
sh8-12-24	36.17	60.03	1.58	2.15	0.39	0.12	0.00	100.44
sh8-14-27	52.08	23.49	23.37	0.00	0.44	0.00	0.00	99.38
sh8-16-30	56.66	26.78	15.23	1.00	0.47	0.00	0.00	100.14
sh1-8-55	74.99	21.80	1.81	1.27	0.00	0.00	0.00	99.87
sh1-9-57	73.65	24.59	1.25	0.00	0.00	0.00	0.00	99.49
sh1-10-58	53.84	7.38	37.29	0.00	0.55	0.00	0.00	99.06
sh8-14-28	1.70	1.30	59.50	0.00	0.39	0.00	33.64	96.53

Таблица 1. Химический состав зерен Os-Ir-Ru минералов (мас. %)

Примечание. Лаурит sh8-14-28 – мелкое включение в Os-Ir-Ru сплаве (ан. sh8-4-27). Содержание Pd, Cu, Ni, As, Te ниже предела обнаружения.

Таблица 2. Химический состав зерен Pt-Fe минералов (мас. %)

№ обр-зерна-	Os	Ir	Pt	Pd	Rh	Fe	Ni	Cu	Сумма	Fe + Cu + Ni,
спектра										ат. %
sh8-7-19	0.20	1.33	84.41	0.39	0.87	12.34	0.27	0.40	100.21	33.98
sh8-13-25	0.00	10.93	73.29	0.19	0.98	11.27	0.63	1.04	98.33	34.75
sh8-9-21	0.00	0.00	86.76	0.36	1.07	9.89	0.22	0.58	98.88	29.35
sh8-5-17c	0.00	2.32	86.27	1.12	0.73	9.24	0.00	0.21	99.89	26.54
sh1-12-61	0.00	0.31	87.16	1.58	2.04	9.24	0.00	0.34	100.67	26.23
sh8-10-22	0.00	3.17	85.10	0.32	1.27	9.03	0.00	0.40	99.29	26.58
sh8-17-31	0.00	2.37	86.15	0.24	1.13	8.84	0.00	0.52	99.25	26.52
sh8-15-29	0.16	0.00	87.82	0.66	0.39	8.48	0.00	1.20	98.71	27.30
sh1-11-59	0.00	2.60	88.41	0.00	0.65	8.43	0.00	1.01	101.10	26.24
sh8-6-18	0.00	0.00	86.63	0.84	1.74	8.32	0.00	1.22	98.75	26.46
sh8-11-23	0.32	2.14	88.59	0.43	1.60	6.50	0.00	0.86	100.44	21.10

Примечание. Зерно sh8-13-25 – включение в сплаве Pt-Fe. Концентрация Ru ниже предела обнаружения.

вы осмий-рутениевого тренда могут образоваться в результате вторичных процессов десульфуризации Ru-Os(-Ir) сульфидов, например в подиформных хромититах Тибета [Bai et al., 2000]. Здесь при десульфуризации минералов ряда лаурит—эрликманит (RuS_2 –OsS₂) образуются самородные фазы, обогащенные примесями Fe, Ni, Cu и Cr и сохраняющие исходные соотношения Ru, Os и Ir.

Процессы десульфуризации Ru-Os(-Ir) сульфидов при воздействии родингитизирующего флюида были также охарактеризованы в магнезиальных хромититах дунит-верлит-клинопироксенитового полосчатого комплекса Нуралинского лерцолитового массива на Южном Урале [Малич и др., 2016]. В результате родингитизации индивиды лаурита подвергаются коррозии с одновременной кристаллизацией тонкодисперсных пористых неоднородных агрегатов, полностью или частично замещающих исходный минерал. На месте лаурита образуется тонкодисперсный агрегат самородных твердых растворов (Ru, Os, Ir, Fe) и серпентина. Соотношения Os, Ir и Ru в валовом составе минеральных агрегатов, замещающих лаурит, соответствуют таковым в исходном лаурите, т. е. на диаграмме составов Ru-Os-Ir минералы будут характеризоваться осмий-рутениевым трендом составов. Псевдоморфное замещение кристаллов первичного лаурита под воздействием водного метаморфизма с последующим термальным метаморфизмом выявлено в хромититах комплекса Лома Бая (Loma Baya) в Мексике [González-Jiménez et al., 2015]. В результате метаморфизма лаурит превращается в пористый агрегат с большим количеством мелких Ru-(Os-Ir) минеральных фаз.

В Малоеремельской россыпи на Южном Урале, источником МПГ которой рассматривается Нуралинский массив, отдельные зерна рутения также отвечают составу осмий-рутениевого тренда [Зайков и др., 2016]. Предполагается, что изменение состава первичных МПГ с потерей иридия были обусловлены воздействием поздних гидротермальных флюидов, способствовавших образованию сульфидов и сульфоарсенидов ЭПГ. Отмечено, что в большинстве случаев, осмий-рутениевый тренд соответствует зернам рутения с микровключениями сульфидов и сульфоарсенидов ЭПГ.

ЗАКЛЮЧЕНИЕ

Установленные нами [Мурзин и др., 2015] различия химического состава Os-Ir-Ru минералов в восточной и западной зонах развития дунит-

Рис. 3. Номенклатура и состав минералов системы осмий – иридий – рутений [Harris, Cabri, 1991] Алабашской россыпи (1), россыпи р. Глинка (2) и Ключевского массива (3) [Zaccarini et al., 2008].

Серое поле – область несмесимости твердых растворов. Тренды вариаций составов: І – иридиевый, ІІ – рутениевый, ІІІ – осмий-рутениевый.

гарцбургитовых массивов на Среднем Урале подтверждаются новыми данными по МПГ западного обрамления Алапаевского массива. Изученные кристаллы Ru-Os-Ir минералов имеют гексагональный облик, монолитное строение и соответствуют по химическому составу осмию и рутению (см. рис. 2а–в) с низким содержанием примесных элементов. По этим признакам их следует отнести к минералам системы Ru-Os-Ir первичного происхождения, образующими осмий-рутениевый тренд составов. Выявленные различия химического состава минералов Ru-Os-Ir ассоциации на Среднем Урале, вероятно, отражает различную природу ультраосновных пород, в частности вмещающих платиноидную минерализацию хромититов.

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 18-05-00988-а.

СПИСОК ЛИТЕРАТУРЫ

Баданина И.Ю., Малич К.Н., Мурзин В.В., Хиллер В.В., Главатских С.П. Минералого-геохимические особенности платиноидной минерализации ВерхНейвинского дунит-гарцбургитового массива (Средний Урал, Россия) // Ежегодник-2012. Тр. ИГГ УрО РАН. Вып. 160. Екатеринбург: ИГГ УрО РАН, 2013. С. 188–192.

- Зайков В.В., Мелекесцева И.Ю., Котляров В.А., Зайкова Е.В., Крайнев Ю.Д. Сростки минералов ЭПГ в Миасской россыпной зоне (Южный Урал) и их коренные источники // Минералогия. 2016. № 4. С. 31–47.
- Малич К.Н., Аникина Е.В., Баданина И.Ю., Белоусова Е.А., Пушкарев Е.В., Хиллер В.В. Вещественный состав и осмиевая изотопия первичных и вторичных ассоциаций минералов платиновой группы магнезиальных хромититов Нуралинского лерцолитового массива (Ю. Урал, Россия) // Геология рудных месторождений. 2016. Т. 58, № 1. С. 3–22.
- Мурзин В.В., Кисин А.Ю., Варламов Д.А. Минералы платиновой группы из россыпи Мурзинско-Адуйского гранитогнейсового комплекса и их возможные источники // Минералогия. 2015. № 1. С. 34–48.
- Мурзин В.В., Суставов С.Г., Мамин Н.А. Золотая и платиноидная минерализация россыпей Верх-Нейвинского массива альпинотипных гипербазитов (Средний Урал). Екатеринбург: УГГГА, 1999. 93 с.
- Некрасова А.А., Азовскова О.Б. Вещественный состав золота и платины россыпей в северной части Восточно-Тагильского ультрабазитового массива. Возможные коренные источники металла // Проблемы минерало-

ЕЖЕГОДНИК-2017, Тр. ИГГ УрО РАН, вып. 165, 2018

гии, петрографии и металлогении. Научные чтения памяти П.Н. Чирвинского: сб. науч. ст. Пермь: Пермский гос. ун-т, 2010. С. 120–126.

- Пушкарев Е.В. Ключевской офиолитовый массив на Среднем Урале // Офиолиты: геология, металлогения и геодинамика: мат-лы междунар. науч. конф. Екатеринбург: ИГГ УрО РАН, 2006. С. 334–346.
- Рожков И.С. Уральские россыпные месторождения золота // 200 лет золотой промышленности Урала. Свердловск: УФАН СССР, 1948. С. 401–503.
- Bai W., Robinson P.T., Fang Q., Yang J., Yan B., Zhang Z., Xu-Feeng Hu, Zhou M.-F., Malpas J. The PGE and base metal alloys in the podiform chromitites of the Luobusa ophiolite, Southern Tibet // Can. Mineral. 2000. V. 38, no. 3. P. 585–598.
- González-Jiménez J.M., Reich M., Camprubí A., Gervilla F., Griffin W.L., Colás V., O'Reilly S.Y., Proenza J.A., Pearson N.J., Centeno-García E.C. Thermal metamorphism of mantle chromites and the stability of noble metal nanoparticles // Contrib. Mineral. Petrol. 2015. V. 170, no. 15. 20 p.
- *Harris D.C., Cabri L.J.* Nomenclature of platinum-groupelement alloys: review and revision // Can. Miner. 1991. V. 29, no. 2. P. 231–237.
- Zaccarini F., Pushkarev E., Garuti G. Platinum-group element mineralogy and geochemistry of chromitite of the Kluchevskoy ophiolite complex, central Urals (Russia) // Ore Geol. Rev. 2008. V. 33. P. 20–30.
- Zaccarini F., Pushkarev E., Garuti G., Kazakov I. Platinum-Group Minerals and Other Accessory Phases in Chromite Deposits of the Alapaevsk Ophiolite, Central Urals, Russia // Minerals. 2016. V. 6, no. 4. 108. 23 p.