ГЛАВА 3. СОСТАВ, КРИСТАЛЛОХИМИЯ И РАДИАЦИОННОЕ РАЗУПОРЯДОЧЕНИЕ УРАНИНИТА, ТОРИАНИТА, КОФФИНИТА И ТОРИТА ИЗ РЯДА ГЕОЛОГИЧЕСКИХ ОБЪЕКТОВ УРАЛА И СИБИРИ

CHAPTER 3. COMPOSITION, CRYSTALCHEMISTRY AND RADIATION DISORDERING EFFECTS IN URANINITE, THORIANITE, COFFINITE AND THORITE FROM URALS AND SIBERIA

Химическое датирование минералов с высоким содержанием радиоактивных элементов (уранинита, торита, торианита, коффинита) сталкивается с проблемой их значительной авторадиационной деструкции, наличием анионных и катионных вакансий, гидратацией и незамкнутостью U-Th-Pb-системы. Количество работ, в которых выполнены корректные датировки торита и коффинита, ограничено (см. например (Parslow et al., 1985; Enami et al., 1993; Forster et al., 2000; Jercinovic et al., 2002; Tracy, 2002; Cocherie, Legendre, 2007)). Эти минералы, как правило, существенно нестехиометричны, в них возможно присутствие молекулярной адсорбированной воды или гидроксильных групп, часто зерна имеют малый размер, зоны гомогенного состава – невелики, встречаются микротрещины и наноразмерные включения, непроявляющиеся на BSE-изображениях, присутствует окисная форма U⁶⁺. Вследствие этого их микрозондовый анализ и датирование сталкивается с рядом сложностей (Pointer et al., 1988a; Forster, 2006; Hansley, Fitzpatrick, 1989). Высокое (от 3-10 до 20 мас. % в древних образцах) содержание радиогенного Рь в уранинитах приводит к накоплению значительных структурных напряжений (Janeczek, Ewing, 1992c, 1995) и эффекту «автоокисления» урана (Frondel, 1958) от U⁴⁺ до U⁶⁺ с ростом отношения U⁶⁺/U⁴⁺ от 0.02 до 0.75 и восстановлением свинца до состояния Pb²⁺. В результате этого структура уранинита дестабилизируется, и может происходить рекристаллизация минерала с потерей геохронологической информации (Janeczek, Ewing, 1992a, 1995; Kotzer, Kyzer, 1993). Содержание примесных элементов в частично измененном уранините достаточно высокое; возможно частичное замещение уранинита коффинитом (Janeczek, Ewing, 1992b, c). Ранее (Kempe, 2003; Kotzer, Kyzer, 1993; Fayek et al., 1997). Представляется актуальным продолжение кристаллохимическим исследований минералов-геохронометров (уранинита, торианита, коффинита), сильно подверженных вторичным изменениям (гидратированию, перекристаллизации и др.), содержащих нерадиогенный Pb.

Цель настоящего раздела – исследование кристаллохимии, радиационного разупорядочения и проблемы замкнутости U-Th-Pb-системы уранинита, торианита, коффинита и торита на примере проб из ряда геологических объектов Урала и Сибири.

Объекты исследования. Детальное описание исследованной коллекции минералов приведено в главе 1; ее основу составили зерна уранинита из гранитоидов Первомайского массива (Средний Урал, проба Т.А. Осиповой); уранинит и торит из гранитоидов доюрского кристаллического фундамента Ямала и Западной Сибири (скв.1 Верхне-Реченской площади, Шаимский нефтегазоносный район, скв. 10486, гл. 1734 и 1744 м Окуневской площади; пробы К.С. Иванова); торианит из карбонатитоподобных пород доломитового состава Карабашского гипербазитового массива (Южный Урал, проба Ю.В. Ерохина), уранинит и коффинит из гранитных пегматитов Липовского жильного поля (Средний Урал, проба Ю.В. Ерохина); уранинит из кварц-сульфидных жил Пышминско-Ключевского медно-кобальт-золоторудного месторождения (Средний Урал, проба В.В. Мурзина).

3.1. Структура, изоморфизм и радиационные повреждения в уранините, коффините, торианите и торите

Большинство урановых минералов может быть подразделено на два типа по степени окисления урана: содержащие U⁴⁺ и U⁶⁺; последние распространены в гораздо большей степени в связи с сильной тенденцией U к окислению. Некоторые минералы содержат разновалентные ионы U⁴⁺ и U⁶⁺, сообщалось о форме U⁵⁺ (Burns, 1999). Как правило, в минералах, содержащих U⁴⁺, имеются регулярные уран-кислородные полиэдры; симметрия таких соединений достаточно высока; подобные структуры часто имеют безурановые аналоги, и как следствие, U⁴⁺ замещает другие катионы в разных минералах; структуры с U⁶⁺ – более сложные. Основы структурной классификации урановых минералов заложены в работе (Frondel, 1958) и развиты, с учетом типа анионных группировок, в работе (Smith, 1984). К числу наиболее важных урановых минералов относятся уранинит, коффинит и уран-пирохлор, содержащие U⁴⁺ (их кристаллографические параметры приведены в табл. 3.1). Как правило, ион U⁴⁺ образует шестиили восьми-координированные кислородные полиэдры с длиной связи U-O = 2.25–2.36 Å.

Уранинит – распространенный минерал урана с номинальной формулой UO₂; типичен для гранитов и связанных с ними пегматитов. Химические и структурные аспекты природного уранинита широко изучались в связи с прогнозированием долговременной стабильности отработанного ядерного топлива (Finch, Ewing, 1992; Pearcy et al., 1994). Минерал имеет кубическую структуру флюорита (рис. 3.1); катионы U⁴⁺ координированы 8 ионами О в виде куба; каждый ион кислорода связан с 4 ионами U. Чистый уранинит в природе встречается редко; реально степень окисления U в мине-

Рис. 3.1. Фрагмент структуры уранинита: кубическая сингония; пространственная группа Fm3m; координация урана – куб из 8 атомов О (Janeczek, Ewing, 1992а)

Fig. 3.1. The fragment of uraninite structure (Janeczek, Ewing, 1992a)

рале всегда несколько выше, чем 4+; химическую формулу можно записать в виде UO_{2+x} , где x = 0-0.25 (Janeczek, Ewing, 1992a).

Химический состав и изоморфизм. Уранинит обычно содержит большое количество радиогенного Pb: до 20 мас. % PbO в древних образцах при наиболее типичных значениях 7–10 мас. % (Janeczek, Ewing, 1995). В минерале много других дочерних продуктов распада изотопов ²³⁵U и ²³⁸U, а также ионы Th, Y, P3Э: до 12 мас. % REE₂O₃ (Frondel, 1958), 11 мас. % CaO (Xu,Wang, 1999) и т.д. Для структуры типичны радиаци-

Таблица 3.1. Кристаллографические параметры некоторых минералов, содержащих U^{4+} Table 3.1. Crystallographic parameters of some U^{4+} -bearing minerals

Минерал	Состав	Группа симметрии	a, Å	c, Å	Литература
Уранинит	UO ₂	Fm3m	5.470-5.443		(Janeczek, Ewing, 1992a)
Коффинит	USiO ₄	I4 ₁ /amd	6.976	6.253	(Fuchs, Gebert, 1958)
Уран-пирохлор	$(U, Ca, Ce)_2(Ta, Nb)_2O_6(OH, F)$	Fd3m	10.44		(Burns, 1999)

онные повреждения. В связи с этим обобщенную формулу уранинита можно записать в виде $(U_{1,x-y-z-v}^{4+}W_{x}^{2+}REE_{y}^{3+}M_{z}^{2+}\Theta_{v}^{4+})O_{2+x-0.5y-z-2v}$, где Θ – катионная вакансия. Постоянная решетки синтетического уранинита уменьшается с ростом степени окисления урана от 5.4682 для $UO_{2.03}$ до 5.440 для $UO_{2.25}$ (Smith, 1984); для природных уранинитов зависимость параметров решетки от степени окисления U усложняется за счет дополнительного влияния примесей.

Примесный состав уранинита определяется его генезисом – окружением и условиями «транспортировки» растворенного урана в природе. Выделяют три типа уранинита (Plant et al., 1999): изверженные, магматические и метаморфические (включая уранинит пегматитов), гидротермальные и низкотемпературные (осадочные). Химический состав неизмененного уранинита может быть использован в качестве индикатора его генезиса (Frondel, 1958): так, магматические ураниниты обычно содержат Th и P3Э, которые практически отсутствуют в гидротермальных и низкотемпературных уранинитах.

Структурная роль радиогенного Рb в уранинитах изучалась во многих работах. С точки зрения размеров атомных позиций Pb не совместим с решеткой уранинита. В работе (Berman, 1957) было высказано предположение о том, что он содержится в уранините в виде включений оксида PbO такого малого размера, что не детектируется рентгенографически, однако данные просвечивающей электронной микроскопии (Janeczek et al., 1993) опровергли это предположение. В работе (Janeczek, Ewing, 1992a) показано, что радиогенный Pb может частично замещать U и входить в междоузельное пространство структуры. Рентгенографически показано, что постоянная решетки уранинита увеличивается с ростом концентрации Pb; при этом в структуре накапливаются сильные напряжения (Janeczek, Ewing, 1992с, 1995). Малая совместимость структуры уранинита со Рb приводит к значительным потерям радиогенного Pb, который, в силу свой относительно малой подвижности в природных флюидах в восстановительных условиях обычно формирует галенит (Janeczek, Ewing, 1995).

Накопление радиогенного Pb в уранините влияет также на среднюю степень окисления U. Поскольку уран в основном находится в форме U⁴⁺, то формальное сохранение зарядового баланса (при игнорировании валентности промежуточных дочерних продуктов) требует образования Рb также в форме Pb⁴⁺, который является сильным окислителем; поэтому уран окисляется до U⁶⁺, а свинец восстанавливается до Pb²⁺; этот процесс известен как «автоокисление» (Frondel, 1958); он может вызывать значительный рост величины отношения U⁶⁺/U⁴⁺ в уранините: в природных образцах эта величина варьирует в интервале 0.02-0.75. Заметим, что соотношение U⁶⁺/U⁴⁺ может быть определено методом фотоэлектронной спектроскопии (Sunder et al., 1996). Протекающие одновременно процессы накопления радиогенного Pb и автоокисления U приводят к дестабилизации структуры уранинита, вследствие чего потери Рb увеличиваются и, как правило, происходит рекристаллизация уранинита (Janeczek, Ewing, 1992a, 1995; Kotzer, Kyzer, 1993).

Следующими по важности примесями уранинита являются Th, Ca и P3Э. Синтетические UO₂ и ThO₂ изоструктурны и формируют непрерывный ряд твердых растворов (Frondel, 1958). Однако в природных магматических уранинитах содержание ThO₂, как правило, не превышает 10–12 мас. % (Frondel, 1958; Grandstaff, 1976; Forster, 1999); известно, что в низкокальциевых гранитах Th предпочтительнее входит в состав минералов монацитовой группы, а не в уранинит (Cuney, Freiderich, 1987).

Содержание Са в магматических уранинитах мало (0.5 мас. % или 12 мол. %); в гидротермальных и низкотемпературных уранинитах оно более высокое (Frondel, 1958; Forster, 1999). Ионный радиус Ca²⁺ (1.12 Å) указывает на его совместимость с решеткой уранинита при соответствующей зарядовой компенсации; синтезированы высокотемпературные (1500-1800 °C) твердые растворы в CaO-UO, с содержанием СаО до 47 мол. % (см. обзор (Finch, Murakami, 1999)). В природных уранинитах ионы Ca²⁺ могут участвовать в зарядовой компенсации U⁶⁺ и U⁵⁺ (Janeczek, Ewing, 1992a; Finch, Ewing, 1992); однако необходимо учитывать, что высококальциевые образцы часто содержат включения кальцита (Janeczek, Ewing, 1995). Кроме того, Са может играть важную роль в процессах замещения Рb в реакциях трансформации исходного уранинита:

$$(U^{4+}_{1-2y} U^{6+}_{y} Pb^{2+}_{y})O_{2} + yCa + yHS^{-} \rightarrow (U^{4+}_{1-2y} U^{6+}_{y} Ca^{2+}_{y})O_{2} + yPbS + yH^{+}.$$

Подтверждением этой реакции служит обычно наблюдаемая обратно-пропорциональная связь содержаний Са и Рb в уранинитах, измененных в нейтральных или восстановительных условиях (Frondel, 1958; Janeczek, Ewing, 1992c; Fayek et al., 1997).

У и РЗЭ входят в природный уранинит в относительно небольших концентрациях, в частности, содержание РЗЭ – от десятков ppm до нескольких десятых мас. %; при этом оно сильно варьирует в зависимости от содержания Р в минерализующих флюидах. Замещение U⁴⁺ на REE³⁺ в синтетическом уранините приводит к росту параметра решетки (Stalbauer et al., 1974); для природных образцов подобные замещения практически не исследованы.

В состав природных уранинитов могут входить также примеси Si, P, Al, Fe, Mg, Na и K (Frondel, 1958; Janeczek, Ewing, 1992b; Pearcy et al., 1994). Кристаллохимическая позиция этих примесных элементов не ясна; большинство из них несовместимы с решеткой уранинита по размерным параметрам. Неизмененный магматический уранинит содержит очень мало таких примесей; их наибольшие концентрации характерны для мелкозернистых образцов низкотемпературного уранинита. Содержания Si и P могут быть относительно высокими в измененном уранините вплоть до частичного замещения уранинита коффинитом (Janeczek, Ewing, 1992b, с); при этом не всегда ясно, какая доля Si и P обусловлена включениями коффинита в уранинит.

U-Th-Pb-система. Первые химические датировки с оценками значений абсолютного возраста были выполнены для уранинита (Holmes, 1911). В работах последних лет химическое микрозондовое датирование выполняется, в основном, по минералу монациту, при этом ураниниту уделяется существенно меньшее внимание. Основная проблема при датировании уранинита – отсутствие четкого ответа на вопрос о наличии нерадиогенного Рb и посткристаллизационных потерях U, Th и радиогенного Pb: уранинит является химически активным минералом и легко обменивается элементами или рекристаллизуется при взаимодействии с флюидом (Grandstaff, 1976; Kotzer, Kyzer, 1993; Finch, Ewing, 1992). Эти вопросы решаются на основе данных о химическом составе и текстуре уранинита. В работах (Isobe et al., 1992; Janeczek, Ewing, 1995; Кетре, 2003) показано, что большинство природных уранинитов – микрогетерогенны по составу; в работе (Кетре, 2003) на примере зерен уранинита из гранитов (Хейлманн, Германия) установлено наличие разных типов химической зональности, выявляемой на BSE-изображениях: ростовой волнообразной, свойственной первичным кристаллам, и вторичной «кусочной», характерной для измененных кристаллов; часто области вторичных изменений наиболее развиты вдоль трещин образца; как правило, такие зоны обеднены Рb. В качестве химического критерия замкнутости U-Th-Pb-системы, используемого для отбраковки точек, попадающих во вторичные зоны, и получаемых по ним значений возраста, принято обязательное условие отрицательной корреляции Pb и Th, U и Th, а также условие положительной корреляции Pb и U (рис. 3.2). Сделан вывод о том, что повышенные концентрации Са, Si и Fe в определенных зонах микрокристаллов могут служить индикатором произошедших вторичных изменений в этих зонах.

Наиболее чувствительным индикатором вторичного изменения является увеличение содержания Si, коррелирующее с ростом содержания Ca (Kotzer, Kyzer, 1993; Fayek et al., 1997). Можно констатировать, что уранинит является практически нестабильным в окислительных условиях: потери Pb, перераспределение U и вхождение в минерал Ca, Si и Fe приводят к открытию U-Th-Pb-системы (Kotzer, Kyzer, 1993). Характер замещений при этом зависит от количества и состава флюидов и, особенно, от их окислительной способности. С учетом того факта, что начальный уранинит содержит минимальные концентрации Fe, Si, Ca, и эти концентрации растут пропорционально потерям радиогенного Pb, в (Alexandre, Kyser, 2005) для зерен из урановой минерализации (месторождения Артур и Веджин Ривер, Северный Саскачеван, Канада) выполнены определения возраста измененного уранинита на основе экстраполяции химических возрастов к возрасту, при котором концентрации замещающих Рb элементов пренебрежимо малы (рис. 3.3).

Таким образом, в (Alexandre, Kyser, 2005) показана возможность проведения в отдельных случаях возрастных определений для химически измененного уранинита.

Рис. 3.2. Диаграммы, иллюстрирующие степень открытости U-Th-Pb-системы уранинита. А: Отклонение точек от тренда корреляции PbO-ThO, сопровождается уменьшением химического возраста и указывает на потери Рb. Б: Отклонение аналитических точек от тренда корреляции UO₂-ThO₂ отражает мобильность U в процессах преобразования уранинита. Отклонения точек вниз от тренда и увеличение возраста указывает на потери U, тогда как противоположный эффект - на его привнос. Точки, обозначенные ромбами, исключены, т.к. они слишком значимо отклоняются от линии регрессии UO₂-PbO, что отражает потери Pb с одновременным привносом U. В: Точки, лежащие в преобразованных областях, отклоняются от линии регрессии UO₂-PbO, полученной по точкам из первичных зон (Kempe, 2003)

Fig. 3.2. Diagrams illustrating preservation/opening of the U–Th–Pb system of the uraninite grains analysed (Kempe, 2003)

Рис. 3.3. Вариации содержания SiO₂, CaO и FeO в уранините как функция U–Pb возраста. Линии линейной регрессии SiO₂ + CaO + FeO (A) и CaO (B) пересекают ось возрастов при 1600 млн. лет, тогда как линия регрессии FeO (C) пересекает ось возрастов при 1400 млн. лет; имеется небольшое различие между низко- и высокожелезистыми популяциями. Приведены коэффициенты линейной регрессии (Alexandre, Kyser, 2005)

Fig. 3.3. Variation of the SiO_2 , CaO, and FeO contents of uraninite from the McArthur River deposit as function of the chemical U–Pb age (Alexandre, Kyser, 2005)

Коффинит (USiO₄) – тетрагональный ортосиликат U, изоструктурный циркону, гафнону и ториту (Speer, 1982). Коффинит обычно встречается в виде очень мелких (менее 10 мкм) индивидов, что затрудняет анализ его структуры и физико-химических свойств (Hansley, Frtzpatrick, 1989; Robit-Pointeau et al., 2006);

Рис. 3.4. Фрагмент структуры коффинита: тетрагональная сингония; пространственная группа I4₁/amd; координация урана – додекаэдр из 8 атомов кислорода; координация кислорода – тройная (U, U, Si) (Finch, Murakami, 1999)

Fig. 3.4. The fragment of coffinite structure (Finch, Murakami, 1999)

структурные данные получены в (Fuchs, Gebert, 1958) для синтетического коффинита. Уран-кислородные полиэдры представляют собой додекаэдры UO₈, связанные вдоль оси с кристалла общими ребрами с SiO₄-тетраэдрами, образуя смешанные цепи; вдоль осей *а* и *b* додекаэдры UO₈ связаны с SiO₄-тетраэдрами общими вершинами (рис. 3.4). Кремний-кислородные тетраэдры являются изолированными. Природный коффинит обычно содержит молекулярную воду – USiO₄ ·nH₂O (Speer, 1982; Lumpkin, Chakоитаkos, 1988; Smits, 1989). Обзор структуры и изоморфных замещений в коффините приведен в (Finch, Murakami, 1999).

Химический состав и изоморфизм. Коффинит является одной из основных фаз, образующихся при химическом изменении («коррозии») уранинита в восстановительных условиях в природе. Предполагается, что коффинит является доминирующей фазой при долговременном хранении отработанного ядерного топлива, состоящего на 95 % из UO₂, в восстановительных, богатых силикатами условиях. В связи с этим химический состав и химические преобразовании коффинита привлекают внимание многих исследователей.

Урано-ториевые силикаты формируют две полные серии тетрагональных безводных и водных компонентов с общими формулами (Th,U)SiO₄ и (Th,U)SiO₄ \cdot nH₂O (n < 4). Эти серии включают в себя три минерала (Smits, 1989): коффинит, водный и безводный урановый минал (U > Th), торит, безводный ториевый минал (Th > U), и торогуммит, гидратированный ториевый минал (Th > U). Все указанные минералы подвержены радиационной метамиктизации и видоизменениям во флюиде; особенно это касается торита и торогуммита (Lumpkin, Chakoumakos, 1988).

Считается, что додекаэдрические позиции U в коффините могут быть замещены катионами Th⁴⁺, Zr⁴⁺, Np⁴⁺, Pu⁴⁺, Am⁴⁺, Hf⁴⁺, U⁶⁺, Ca²⁺, Y³⁺ и REE^{3+} , а тетраэдрические позиции – P^{5+} , S^{6+} и As⁵⁺. Разнообразие типов замещения определяется возможностью образования твердых растворов в системе коффинит-циркон-торит-ксенотим-нингоит (Finch, Hanchar, 2003; Forster, 2006). Образование твердого раствора коффинита с изоструктурным ему ксенотимом УРО, исследовалось в работах (Hansley, Frtzpatrick, 1989; Janeczek, Ewing, 1996); предложена схема: $Y^{3+} + P^{5+} \rightarrow U^{4+} + Si^{4+}$; вхождение примесного Ca – в работе (Janeczek, Ewing, 1996), где высказано предположение об ограниченном формировании твердого раствора коффинит-нингоит $(U_{1,x}Ca_{1,x}REE_{2,x}(PO_{4})_{2})(1-2)H_{2}O, x = 0.1-0.2$ (Muto et al., 1959)) по схемам: $2Ca^{2+} + 0.8P^{5+} + 0.2^{IV}\Theta \rightarrow$ $U^{4+} + Si^{4+}$; 2Ca²⁺ + P⁵⁺ + OH⁻ $\rightarrow U^{4+} + Si^{4+}$ (здесь ^{IV} Θ - катионные вакансии в тетраэдрической подрешетке коффинита). В работе (Janeczek, Ewing, 1992) высказано предположение об участии U⁶⁺ в схеме изоморфного вхождения Са в коффинит, основанное на корреляции содержаний Са и U: Ca²⁺+U⁶⁺ \rightarrow 2U⁴⁺. В работе (Deditius et al., 2007) показано, что возможен и другой способ вхождения U⁶⁺ в состав коффинита при его содержании менее 0.2 ат./ф.ед.: $U^{4+} + Si^{4+} \rightarrow U^{6+}$ + 2(ОН)⁻. Данный тип изоморфизма предполагает замещение небольшой части тетраэдрических позиций ОН⁻ – группами. При этом следует отметить, что в более ранних работах (Speer, 1982; Lumpkin, Chakoumakos, 1988; Smits, 1989) показано, что вода входит в коффинит в основ-

Рис. 3.5. Изображение HAADF-STEM корродированного коффинита (c1) в V-слюде (a) и гистограмма химических возрастов коффинита (Deditius et al., 2007) в сравнении с изотопными данными (Ludwig et al., 1984) (б). Уранильный сульфат (см. а) образован из коффинита; пористость коффинита обусловлена процессами его растворения (Deditius et al., 2007)

Fig. 3.5. a) A HAADF-STEM image of corroded coffinite (c1) embedded in V-mica. Uranyl sulfate precipitate at the expense of coffinite. Note the porosity created due to the dissolution of coffinite; b) A histogram of U-Pb chemical ages for coarse-grained coffinite (Deditius et al., 2007)

ном в молекулярной форме. В работе (Deditius et al., 2007) отмечено также, что ксенотимовый тип замещения может приводить к образованию твердых растворов коффинит-черновит-(Y) (YAsO₄): (Y,REE)³⁺ + (P,As)⁵⁺ \rightarrow U⁴⁺ + Si⁴⁺.

Процессы химического преобразования и рекристаллизации коффинита в настоящее время исследованы недостаточно. В работе (Deditius et al., 2007) показано, что коффинит в природе часто ассоциирован с органикой и/или сульфидными минералами (галенитом, пиритом и халькопиритом), что свидетельствует о восстановительных условиях в системе. На примере коффинита из уранового месторождения Грантс, Нью Мехико, установлено, что изменение первичного коффинита в восстановительных условиях определяется растворяющим действием органических кислот, в результате чего осаждается вторичный коффинит, обедненный Са и U. Окисляющие флюиды впоследствии приводят к образованию вместо коффинита уранильных минералов ((Na,K)(UO₂)(SiO₃OH)(H₂O)₁₅) и $((UO_2)(SO_4)(OH)_{14}(H_2O)_{13})$, не содержащих REE.

U-Th-Pb-система. В работе (Deditius et al., 2007) выполнены химические U-Pb-датировки первичного и вторичного коффинита из уранового месторождения Грантс, Нью Мехико; они

сопоставлены с изотопными данными (Ludwig et al., 1984). Для неизмененного коффинита получены значения химического возраста (рис. 3.5), незначительно отличающиеся от изотопных U-Pb данных. Высказано предположение о непрерывном замещении первичной руды осаждающимся молодым коффинитом.

Торит – тетрагональный ортосиликат тория ThSiO₄, изоструктурный циркону ZrSiO₄, гафнону HfSiO₄, коффиниту USiO₄ (Speer, 1982). Торит переходит в моноклинную модификацию – хаттонит при температуре порядка 1200 °С (Finch et al., 1964; Seydoux, Montel, 1997); ocoбенности фазового перехода исследованы в (Mazeina et al., 2005). Торит, хаттонит и коффинит - единственные встречающиеся в природе ортосиликаты актиноидов. Торит и хаттонит - достаточно редкие минералы; они описаны в пегматитовых ассоциациях с сиенитами и нефелиновыми сиенитами (Kamineni, Lemire, 1991), встречаются как акцессорные минералы кристаллических сланцев (Taylor, Ewing, 1978; Forster et al., 2000). Структура торита описана в (Fuchs, Gebert, 1958; Wyckoff, 1966; Taylor, Ewing, 1978); детальное описание способа сочленения полиэдров, координации катионов и анионов, а также изображение фрагмента структуры приведено нами выше для изоструктурного коффинита. Постоянные решетки торита – $a_0 = 7.1328$, $c_0 = 6.3188$ (Taylor, Ewing,1978) и $a_0 = 7.1200$, $c_0 = 6.3200$ (Wyckoff,1966).

Химический состав и изоморфизм. Торит может содержать до 10 % U, Y и HREE (Bea, 1996; Forster, 2006). В литературе последних лет представлено много работ, посвященных электронно-зондовым исследованиям торита (Pagel, 1982; Foord et al., 1985; Lumpkin, Chakoumakos, 1988; Pointer et al., 1988a, b; Feely et al., 1989; Farges, Calas, 1991; Linkang et al., 1992; Casillas et al., 1995; Bea, 1996; Montero et al., 1998; Forster et al., 2000; Wang et al., 2001; Johan, Johan, 2004; Forster, 2006). B paбotax (Pointer et al., 1988а; Forster, 2006) отмечаются аналитические сложности высокоточного микрозондового анализа торита (а также коффинита (Hansley, Fitzpatrick, 1989) и промежуточных гидратированных твердых растворов торит-коффинит), состоящие, прежде всего, в отклонении суммарных содержаний элементов от 100 % и получаемой нестехиометричности указанных соединений. В качестве причин этого явления рассматривается возможное присутствие молекулярной адсорбированной воды или гидроксильных групп, замещающих силикатные анионные группировки; присутствие неучтенных примесей; малый размер зерен и зон гомогенного состава; наличие микротрещин; присутствие U⁶⁺; наличие включений наноразмерного масштаба, не наблюдаемых на BSE-изображениях, в частности, в работе (Harlov et al., 2005) было продемонстрировано присутствие нановключений монацита и ксенотима в природном фторапатите после лабораторного процесса, моделирующего метасоматоз.

Состав природных твердых растворов торита с ксенотимом, цирконом, коффинитом детально изучен в работе (Forster, 2006) на примере образцов из варисцийских гранитов Германии и Африки. Описание возможных схем изоморфизма в тетрагональных минералах данной группы содержится в работах (Pointer et al., 1988а; Johan, Johan, 2004; Breiter et al., 2006). Показано, что одним из важных типов изоморфизма, играющим большую роль при формировании указанных твердых растворов, является замещение силикатной группировки на гидроксильную группу с возможным участием F, что может быть представлено в виде $(M_{1-x}^{4+}M_{x}^{3+})(SiO_{4})_{1-x}(OH,F)_{3x}$. Ион F может участвовать в схемах вхождения трехвалентных элементов (REE и Y) в структуру торита, циркона, коффинита в том случае, когда замещения по ксенотимовому типу $(M^{3+}/P^{5+} \leftrightarrow M^{4+}/P^{5+})$ Si⁴⁺, где M^{4+} = Th, Zr, U и M^{3+} = Y, REE) полностью не компенсируют вхождение трехвалентных примесей. Кроме того, заряд трехвалентных элементов может быть скомпенсирован по CXEME: $2(REE + Y)^{3+}(Ca, Fe)^{2+} \leftrightarrow 2(Th, Zr,U)^{4+}$. Предполагается, что Th, U, Zr, Hf, Ti, REE, Y, Са, Fe встраиваются в додекаэдрические Апозиции структуры, а P, Si – в тетраэдрические В-позиции; атомы А1 могут занимать как те, так и другие позиции. Вхождение А1 в тетраэдры может быть скомпенсировано фосфором по схеме замещения $P^{5+} + Al^{3+} \leftrightarrow 2Si^{4+}$. Необходимо подчеркнуть, что, как правило, экспериментально в торите фиксируется существенный дефицит катионов в В-позициях (Si, P, Al) при избытке катионов в А-позициях (Th, U, Zr, REE, Ca, Fe) (см. рис. 3.6). Этот факт обычно объясняется присутствием воды в образцах; для торита ее количество может достигать 15-17 мас. % (Speer, 1982; Farges, Calas, 1991).

Основной вопрос при изучении природных твердых растворов торита с ксенотимом, цирконом, коффинитом состоит в определении областей смесимости компонентов, условий возникновения твердых растворов и их стабильности. В работе (Forster, 2006) установлены широкие области смесимости для природных гидратированных, F-содержащих твердых растворов: для системы торит-ксенотим – до 29-38 YPO₄ и 17-28 мол. % ThSiO₄; для системы торит-циркон – до 40 ZrSiO₄ и до 40 мол. % ThSiO₄; для системы торит-коффинит – до 36.1 USiO₄ и до 19 мол. % ThSiO₄, а также широкую область смесимости для твердых растворов сложного смешанного состава. Однако для безводных синтетических аналогов известны существенно более узкие границы смесимости, не превышающие 10-15 мол. % (см. (Mumpton, Roy, 1961) для бинарных систем торит-циркон, торит-коффинит; (Hanchar et al., 2001; Finch, Hanchar, 2003) для системы циркон-ксенотим). Предполагается (Pointer et al., 1988a, b; Forster, 2006), что исследованные твердые растворы из гранитоидов Риривай, Нигерия (Pointer et al. 1988а,b) и из варисцийских гранитов Германии и Африки (Forster, 2006)), не являются тер-

модинамически стабильными. Подобные системы, как правило, формируются за счет прорастания внутри, на периферии и/или за счет первичной акцессорной фазы; их формирование обусловлено видоизменением предшествующих минералов за счет действия флюидов.

U-Th-Pb-система. Благодаря высоким концентрациям Th и U торит представляется перспективным минералом для проведения его химического датирования. Однако, в отличие от монацита и других фосфатных минералов, структура которых мало подвержена метамиктизации, и циркона, сохраняющего стабильность при метамиктизации, торит накапливает большое количество радиационных повреждений (Farges, Calas, 1991) и сильно гидратируется; при этом замкнутость его Th-U-Pb системы может нарушаться. Вследствие этого число работ, посвященных датировкам торита, невелико (Parslow et al., 1985; Enami et al., 1993; Рис. 3.6. Суммарное содержание элементов в А-позициях (Th + U + Zr + Hf + Ti + REE + Y + Ca + Fe + Al_r) в зависимости от содержания элементов в В-позициях (Si + P + Al_b) торита из Германии и Африки (данные микрозондового анализа). Количество атомов Al в Впозициях – в соответствии с берлинитовой схемой замещения; остальные атомы Al – в A-позициях (Forster, 2006)

Fig. 3.6. A plot of A-site versus B-site occupancy (apfu) for thorite from the Erzgebirge and Jordan (Forster, 2006)

Рис. 3.7. Изохронная диаграмма для торита из гранитной интрузии А-типа из Попаласки (Корсика). Обращает на себя внимание разброс данных. Аналитические данные далеки от изохроны, соответствующей возрасту гранита (290±2 млн. лет) (Cocherie, Legendre, 2007)

Fig. 3.7. Isochron diagram for thorite from the Popolasca A-type granite (Corsica). Note the scattering of the data. All analyses are far from the isochron representing the age of the granite itself (290 ± 2 Ma) (Cocherie, Legendre, 2007)

Forster et al., 2000; Jercinovic et al., 2002; Tracy, 2002). Перспективы использования торита в микрозондовом химическом датировании изучались в (Cocherie, Legendre, 2007); авторами исследованы индивиды торита из гранитной интрузии А-типа из Пополаски (Корсика), однако полученные результаты (рис. 3.7) однозначно свидетельствуют о незамкнутости U-Th-Pb-системы торита; при этом согласно изотопных датировок циркона методом TIMS его конкордантный возраст составляет 291.9 ± 7.3 млн. лет; на основании полученных данных авторами сделан вывод о нецелесообразности использования торита как в изотопной, так и химической геохронологии вследствие больших непрерывных потерь радиогенного Pb.

Отметим, что имеются работы, представляющие и определенный позитивный опыт датировок слабоизмененного и низкометамиктного торита (Forster et al., 2000). В цитированной

работе изучались образцы хаттонита и торита с пляжей Гиллеспи (Южный Уэстленд, Новая Зеландия), для которых рентгенографически была установлена невысокая степень метамиктности, и суммарное содержание анализируемых элементов близко к 100 мас. %. Авторами отмечена химическая и возрастная гетерогенность зерен торита; статистически выделено четыре возрастных популяции – 205–210, 152±9, 76±6 и 41±5 млн. лет. В работе допускается возможность потерь радиогенного Рb в торите, индуцированных внешними флюидами.

3.2. Состав, элементное картирование и кристаллохимические особенности уранинита, торианита, коффинита и торита из ряда геологических объектов Урала и Сибири^{*}

3.2.1. Уранинит гранитоидов Первомайского массива, Средний Урал

Уранинит проба (Мл-6) размером до 20 мкм (илл. 26) слагает акцессорную вкрапленность в лейкогранитах массива; последние по своей петролого-геохимической характеристике приближаются к редкометальным. Минерал встречается по всей матрице гранитоида. В табл. 3.2 приведен химический состав уранинита для 5 микрозондовых точечных анализов.

Анализ состава уранинита Мл-6, следуя (Кетре, 2003; Коtzer, Куzer, 1993; Fayek et al., 1997), указывает на крайне низкую степень его вторичных преобразований: суммарное содержание оксидов не ниже 97 мас. %; наблюдается положительная корреляция содержания PbO и UO₂ и отрицательная корреляция ThO₂ и UO₂ (рис. 3.8); примеси Са и Fe не обнаружены; содержание SiO₂ – невысокое (до 0.82 мас. %). С учетом этих фактов можно предполагать высокую степень замкнутости его Th-U-Pb системы и перспективность проведения химических датировок.

Рис. 3.8. Соотношение содержаний PbO, ThO₂ и UO₂ в уранинитах различного генезиса: 1 – из гранитоидов Первомайского массива; 2 – из гранитов фундамента Ямала; 3 – из гранитоидов фундамента Западной Сибири; 4 – из гранитных пегматитов Липовского жильного поля; 5 – из жил Пышминско-Ключевского месторождения

Fig. 3.8. Chemical composition of uraninite (sample MI-6, Pervomaiskii massif, Ural; V.-Rech., Yamal basement, Siberia; Ok, West Siberia basement; Lip., Lipovskoye vein field, Ural; Pk-12, Pisminsko-Klyuchevskoye deposite, Ural) (1–5)

^{*)} Настоящий раздел работы выполнен совместно с Ерохиным Ю.В.

0	Химический состав							
Оксид	1	2	3	4	5			
ThO ₂	2.74	3.15	3.61	3.37	3.72			
UO,	78.87	87.10	88.06	85.96	88.42			
PbO	2.90	3.24	3.32	3.27	3.33			
La ₂ O ₃	0.00	0.05	0.01	0.06	0.00			
Ce ₂ O ₃	0.02	0.13	0.08	0.03	0.02			
Nd ₂ O ₃	0.06	0.05	0.10	0.07	0.03			
Sm ₂ O ₃	0.06	0.07	0.00	0.06	0.00			
Y ₂ O ₃	0.56	0.69	0.68	0.62	0.68			
SiO ₂	15.76	1.81	1.21	2.39	0.44			
CaO	0.06	0.05	0.03	0.05	0.02			
P ₂ O ₅	0.01	0.01	0.01	0.00	0.02			
FeO	0.06	0.00	0.03	0.01	0.00			
Сумма	101.10	96.35	97.14	95.88	96.67			
Т, млн. лет	268	271	274	276	273			
ΔT , млн. лет	6	6	6	6	6			

Таблица 3.2. Химический состав (мас. %) в точках и значения возраста (млн. лет) уранинита Мл-6 Table 3.2. Chemical composition (wt. %) and age (Ma) of uraninite from Pervomaisky massif

3.2.2. Уранинит из гранитов фундамента Ямала, Верхне-Реченская площадь, скв. 1

В лейстах биотита из гранитов установлены отдельные индивиды уранинита, размером до 30 мкм, обычно кубического облика (илл. 31). Кроме того, он встречается в виде срастаний с зернами монацита и ксенотима. В табл. 3.3 приведен химический состав уранинита (проба В.-Реч.) по данным для 10 микрозондовых точек анализа.

Для некоторых зерен уранинита проявляется

слабая неоднородность по содержанию примесей У и Тh. Суммарное содержание оксидов несколько ниже, чем в первомайском уранините, и значительно варьирует по зерну. Наблюдается положительная корреляция содержания PbO и UO₂; корреляции ThO₂ и UO₂ не выявлено (рис. 3.8); содержание SiO₂ – невысокое (до 0.62 мас. %). Представляется, что уранинит В.-Реч. не испытывал значимых вторичных преобразований.

Таблица 3.3. Химический состав (мас. %) в точках и значения возраста (млн. лет) уранинита В.-Реч. Table 3.3. Chemical composition (wt. %) and age (Ma) of uraninite V.-Rech.

0		Химический состав									
Оксид	1	2	3	4	5	6	7	8	9	10	
ThO ₂	3.72	2.35	2.22	3.18	3.30	2.92	2.09	2.05	2.60	2.22	
UO ₂	88.41	84.09	88.08	87.59	89.85	86.56	87.24	88.45	85.03	88.79	
PbO	3.19	2.93	3.16	3.14	3.26	3.17	3.03	3.13	3.04	3.13	
Ce ₂ O ₃	0.09	0.05	0.21	0.00	0.00	0.33	0.16	0.25	0.41	0.40	
La ₂ O ₃	0.00	0.00	0.01	0.00	0.18	0.01	0.00	0.00	0.00	0.00	
Nd ₂ O ₃	0.15	0.20	0.29	0.00	0.09	0.22	0.31	0.27	0.46	0.25	
Y ₂ O ₃	1.18	2.21	2.18	0.73	0.40	2.28	2.18	1.97	3.67	2.09	
SiO ₂	3.54	5.38	0.13	0.68	0.15	0.26	0.10	0.10	0.03	0.09	
Сумма	100.28	97.21	96.28	95.31	97.23	95.73	95.12	96.21	95.24	96.97	
Т, млн. лет	262	254	262	260	264	266	254	258	260	258	
ΔT , млн. лет	8	6	8	8	8	8	8	8	8	8	

3.2.3. Уранинит и торит гранитоидов фундамента Западной Сибири, Окуневская площадь, скв. 10486

В граносиенитах (скв. Оку 10486; гл. 1734 и 1744 м) обнаружены акцессорные минералы – уранинит и торит. Уранинит образует округлые зерна до 20 мкм в диаметре (илл. 32, а) в лейстах биотита и в редких случаях отмечается на контакте с крупными индивидами титанита. Зерна имеют отчетливые плеохроичные дворики (илл. 32, б), которые хорошо выделяются в слюдистой матрице. Следов оптической зональности или вторичных изменений в уранините не наблюдается, без анализатора зерна непрозрачны. В табл. 3.4 приведен химический состав окуневского уранинита для 7 микрозондовых точек анализа.

Уранинит ОК отличается высокими содержаниями Th, Pb и Ce; отмечаются небольшие примеси Zr, Y, La, Ca, Pr и Nd. Сумма всех катионов, как правило, не превышает 95 мас. %, что позволяет предполагать присутствие в минерале воды и катионных вакансий (на рентгенофлуоресцентном спектре никаких других элементов, кроме приведенных в табл. 3.4, не обнаружено). При элементном картировании в крупном зерне уранинита отмечается явная зональность (илл. 8, 11): в центральной части содержание ThO₂ повышено до 14–15 мас. %, а на периферии оно составляет 7–9 мас. %. Содержание примесей Si, Ca, Y невелико и незначительно варьирует в пределах образца: 0–0.004, 0.014– 0.028 и 0.021–0.025 ат./ф.ед., соответственно. Установлена положительная корреляция содержаний PbO и UO₂ и отрицательная – ThO₂ и UO₂ (рис. 3.8), что является признаком высокой сохранности U-Th-Pb-системы уранинита; это заключение подтверждается и крайне низким содержанием SiO₂ (не выше 0.11 мас. %).

Торит ОК образует мелкие (до 10 мкм) хорошо окристаллизованные зерна (илл. 33) изометричного габитуса в кварцевой матрице; зерна отличаются хорошо сохранившейся морфологией, повидимому, благодаря «бронированной» рубашке кварца. Торит, в отличие от монацита, сильно подвержен радиационной деструкции (метамиктизации) (Farges, Calas, 1991) и гидратации, что может значимо нарушать замкнутость его Th-U-Pb-системы (Cocherie, Legendre, 2007; Foster et al., 2000). В табл. 3.5 приведен химический состав окуневского торита для 9 микрозондовых точек анализа, которые позволяют предполагать высокую степень сохранности его структуры: для него характерны невысокие содержания примесных элементов, валовый состав близок к 100 мас. %, вследствие этого представляется, что процесс его гидратации и степень преобразованности структуры - незначительны.

0.000	Химический состав в точках									
Оксид	1	2	3	4	5	6	7			
ThO ₂	13.05	14.52	14.58	15.32	7.38	9.80	8.29			
UO ₂	70.71	69.35	69.17	68.44	75.15	76.81	78.73			
PbO	3.09	3.04	3.04	3.01	3.17	3.28	3.31			
Y ₂ O ₃	0.92	0.92	0.95	0.95	0.96	1.00	1.04			
Ce ₂ O ₃	3.76	3.50	3.68	3.67	3.77	1.96	1.89			
La ₂ O ₃	0.49	0.41	0.55	0.58	0.67	0.27	0.20			
Nd ₂ O ₃	1.69	1.87	1.90	1.87	1.88	0.94	0.86			
Pr ₂ O ₃	0.49	0.42	0.43	0.38	0.46	0.31	0.28			
ZrO ₂	1.10	1.15	1.23	1.27	1.18	0.30	0.21			
CaO	0.31	0.31	0.30	0.33	0.59	0.33	0.38			
Сумма	95.62	95.48	95.83	95.83	95.21	95.01	95.19			
Т, млн. лет	303	301	302	302	300	301	298			
ΔТ, млн. лет	13	10	10	9	8	7	10			

Таблица 3.4. Химический состав (мас. %) в точках и значения возраста (млн. лет) уранинита ОК Table 3.4. Chemical composition (wt. %) and age (Ma) of uraninite OK

Околя				Хими	ический с	остав			
Оксид	1	2	3	4	5	6	7	8	9
ThO ₂	73.06	73.51	74.25	73.54	72.84	72.90	74.32	73.37	74.13
UO ₂	7.90	7.92	8.03	7.92	8.11	8.03	8.05	8.28	8.07
PbO	1.21	1.20	1.24	1.23	1.29	1.23	1.24	1.24	1.26
P_2O_5	0.12	0.10	0.10	0.09	0.12	0.12	-	-	-
Ce_2O_3	0.07	0.15	0.19	0.03	0.14	0.20	0.11	0.06	0.12
Y ₂ O ₃	0.21	0.23	0.22	0.12	0.24	0.25	0.23	0.06	0.22
SiO ₂	17.68	17.73	17.62	17.60	17.62	17.55	17.65	17.75	17.58
ZrO ₂	0.08	0.08	0.11	0.08	0.09	0.03	0.01	0.02	0.13
FeO	0.01	0.03	0.04	0.02	0.02	0.03	0.00	0.01	0.00
Сумма	100.33	100.95	101.80	100.64	100.46	100.33	101.60	100.79	101.51
Т, млн. лет	291	286	293	294	307	295	292	292	298
ΔT , млн. лет	21	20	21	21	21	21	14	13	12

Таблица 3.5. Химический состав (мас. %) в точках и значения возраста (млн. лет) торита Ок Table 3.5. Chemical composition (wt. %) and age (Ma) of thorite Ok

3.2.4. Торианит Карабашского гипербазитового массива, Южный Урал

Тело золотоносных карбонатных (карбонатитоподобных) пород наблюдается в юго-западной части Карабашского массива в пределах гребня, примерно в 200 м западнее высшей точки Золотой горы. Ранее (Мурзин и др., 2005) на данном объекте торианит (проба Кар.) был установлен в виде мелких включений в монаците и кроме Th содержал примеси Pb и Ce. Нами исследован торианит размером до 10–15 мкм, обнаруженный в виде рассеянных мелких включений (илл. 34) в золотоносных карбонатитоподобных породах в югозападной части Карабашского гипербазитового массива. Торианит слагает изометричные округлые индивиды среди доломитовой матрицы.

В табл. 3.6 приведен химический состав торианита для 6 микрозондовых точек анализа. Минерал отличается высокими содержаниями U, Ca, Pb, Ce и Nd, также наблюдаются примеси La, Y и Si; состав всех изученных зерен торианита практически одинаков (табл. 3.6); химической зональности и вторичных изменений в индивидах не фиксируется.

Таблица 3.6. Химический состав (мас. %) в точках и значения возраста (млн. лет) торианита Кар.

Table 3.6. Chemical composition (wt. %) and age (Ma) of thorianite from Karabash ultramafics massif

0.000		Химический состав									
Оксид	1	2	3	4	5	6					
ThO ₂	62.80	61.75	60.66	67.43	67.35	67.54					
UO ₂	26.58	26.53	23.67	25.58	25.47	25.34					
PbO	2.04	1.96	1.77	2.04	2.02	2.02					
Ce ₂ O ₃	1.7	1.72	1.17	1.82	1.87	1.74					
La ₂ O ₃	0.18	0.18	0.11	0.12	0.19	0.16					
Nd ₂ O ₃	1.53	1.53	1.36	1.44	1.51	1.37					
Y ₂ O ₃	0.18	0.19	0.15	0.15	0.16	0.17					
SiO ₂	0.3	0.29	0.62	0.29	0.29	0.3					
CaO	5.66	7.36	4.57	2.49	2.31	2.45					
Сумма	100.97	101.51	94.08	101.36	101.17	101.09					
Т, млн. лет	320	314	306	321	319	320					
ΔT , млн. лет	11	10	14	11	15	10					

3.2.5. Уранинит и коффинит гранитных пегматитов Липовского жильного поля, Средний Урал

Уранинит (проба Лип.) установлен в виде включений в закономерных срастаниях циркона с ксенотимом (илл. 35, а) в матрице пегматита. Он образует мелкие зерна в индивидах силиката, размером до 20-25 мкм. Уранинит слагает изометричные восьмигранники и, судя по всему, кристаллизовался в виде кристаллов ограненных комбинацией куба и октаэдра. Для исследования были отобраны образцы из жилы редкометального гранитного пегматита Липовского никелевого месторождения (Ерохин и др., 2010), расположенной в южном борту карьера в 200 метрах восточнее от главного спуска в выработку (в пределах заброшенного и затопленного карьера 6 Липовского никелевого месторождения). Коффинит слагает мелкие округлые индивиды размером до 5-10 мкм в срастании с более крупными зернами циркона (илл. 35, б) в матрице пегматита.

В табл. 3.7 приведен химический состав уранинита Лип. для 6 микрозондовых точечных анализов; для него характерны высокие содержания Th, Pb и Y; примеси Ce, Nd, Ca и Si – в незначительных концентрациях. Сумма компонентов не превышает 96.5–97.0 мас. %,

что указывает на возможное присутствие в минерале воды и катионных вакансий радиационного происхождения, при этом на общем рентгенофлюоресцентном спектре уранинита присутствие других элементов кроме отмеченных в табл. 3.7 не фиксируется. По валовому составу и содержанию U, Th, Pb и Si липовский уранинит близок к первомайскому, но при этом в нем несколько повышена концентрация Y и Ca, и для него характерна высокая химическая гомогенность (низкая дисперсия содержания элементов). Полученные данные указывают на возможность корректных датировок данного уранинита.

В табл. 3.8 приведен химический состав коффинита для 4 микрозондовых точек анализа; они свидетельствуют о высоком содержании примеси Th, Y и Pb; при этом сумма компонентов составляет от 92.0 до 97.7 мас. %, что может быть связано связано с наличием в минерале воды и катионных вакансий. При этом нельзя исключить, что вследствие малого размера индивидов коффинита, соизмеримых с радиусом электронного пучка, возможно внесение аналитических погрешностей.

Таблица 3.7. Химический состав (мас. %) в точках и значения возраста (млн. лет) уранинита Лип. Table 3.7. Chemical composition (wt. %) and age (Ma) of uraninite from Lipovskoye veins field

0.0000	Химический состав									
Оксид	1	2	3	4	5	6				
ThO ₂	5.46	5.56	5.59	5.58	5.56	5.57				
UO ₂	85.09	85.20	85.14	85.20	85.18	85.14				
SiO ₂	0.61	0.67	0.64	0.66	0.66	0.71				
La ₂ O ₃	-	-	0.06	-	0.03	-				
Ce ₂ O ₃	0.13	0.15	0.01	0.19	0.11	0.23				
Nd ₂ O ₃	0.24	0.22	0.18	0.18	0.16	0.17				
Y ₂ O ₃	1.04	1.05	1.05	1.07	1.06	1.08				
PbO	3.11	3.15	3.16	3.13	3.15	3.14				
CaO	0.74	0.73	0.76	0.76	0.77	0.74				
P ₂ O ₅	0.04	0.04	0.04	0.03	0.05	0.03				
Сумма	96.47	96.76	96.65	96.80	96.72	96.81				
Т, млн. лет	263	266	267	265	266	266				
ΔТ, млн. лет	5	5	5	5	5	5				

Оконд		Химический состав							
Оксид	1	2	3	4					
ThO ₂	2.33	2.03	2.13	2.14					
UO ₂	65.12	65.80	69.06	69.88					
SiO ₂	16.45	13.78	15.57	17.62					
Ce ₂ O ₃	0.06	-	0.05	0.08					
Y ₂ O ₃	9.84	7.73	6.09	5.33					
РЬО	2.37	2.44	2.56	2.60					
Сумма	96.18	91.78	95.47	97.66					
Т, млн. лет	265	270	270	271					
ΔT , млн. лет	7	7	7	7					

Таблица 3.8. Химический состав (мас. %) в точках и значения возраста (млн. лет) коффинита Лиг
Table 3.8. Chemical composition (wt. %) and age (Ma) of coffinite from Lipovskoye vein field

3.2.6. Уранинит из Пышминско-Ключевского месторождения, Средний Урал

Уранинит (проба ПК-12) слагает мелкую вкрапленность в кварц-сульфидных жилах и вмещающих метасоматитах Си-Со-Аи месторождения, залегающего среди девонских вулканогенно-осадочных пород. Обычно встречается в виде включений до 5–10 мкм (илл. 36) в матрице магнетита, реже ассоциирует с пиритом и халькопиритом. В табл. 3.9 приведен химический состав уранинита для 8 микрозондовых точек анализа. Суммарное содержание оксидов близко к 100 мас. %; корреляциия содержаний PbO и UO_2 выражена слабо; корреляции UO_2 с ThO₂ не выявлено (рис. 3.8), а с суммарным содержанием (Si + Ca + Fe) проявляется достаточно значимо (рис. 3.9). В минерале фиксируется повышенное содержание примесей Ca и Fe; концентрация SiO₂ варьирует в широких пределах, достигая в ряде точек 1.2 мас. %. Анализ дан-

Таблица 3.9. Химический состав (мас. %) в точках и значения возраста (млн. лет) уранинита ПК-12 Table 3.9. Chemical composition (wt. %) and age (Ma) of uraninite from Pyshminsko-Klyuchevskoye deposite

0	Химический состав									
Оксид	1	2	3	4	5	6	7	8		
ThO ₂	0.02	0.91	0.47	0.39	0.02	0.52	0.05	0.25		
UO ₂	89.68	89.80	87.18	88.29	88.46	88.16	88.62	88.77		
PbO	4.65	4.65	4.38	4.31	4.59	4.48	4.66	4.32		
FeO	3.73	2.89	4.89	4.47	3.34	4.44	3.53	3.97		
Ce ₂ O ₃	0.15	0.32	0.18	0.28	0.18	0.12	0.24	0.36		
Y ₂ O ₃	1.84	0.24	2.33	1.70	2.32	1.54	2.38	0.55		
CaO	0.55	1.24	0.87	0.74	0.88	0.69	0.93	1.49		
SiO ₂	0.07	0.16	0.08	0.32	0.10	0.33	0.02	0.94		
SO ₃	0.00	0.21	0.00	0.02	0.00	0.05	0.00	0.01		
Сумма	100.68	100.42	100.37	100.51	99.88	100.33	100.42	100.66		
Т, млн. лет	377	375	366	355	377	369	382	354		
Δ T, млн. лет	23	23	13	15	14	28	23	27		

Кратко суммируя полученные результаты, отметим следующее. Изучение состава, зональности, изоморфизма в уранините, торианите, коффините, торите – необходимые этапы, предшествующие химическому датированию, создающие основу для выявления возрастной гетерогенности (полихронности) зерен минералов, в ряде случаев они позволяют также констатировать факт вторичных преобразований. Представляется, что кроме анализа эмпирических кристаллохимических критериев закрытости минералов необходимы экспериментальные и теоретические исследования радиационных повреждений структуры минералов-геохронометров.

Рис. 3.9. Соотношение содержаний (Si+Ca+Fe) и U в уранините ПК-12

Fig. 3.9. (Si+Ca+Fe) vs U in uraninite (sample Pk-12, Pisminsko-Klyuchevskoye deposite, Ural)